[1] Adimurthi, Yang Y Y. An interpolation of Hardy inequality and Trudinger-Moser inequality in $\mathbb R^N$ and its applications. Int Math Res Not IMRN, 2010, 13: 2394-2426 [2] Alves C O, Do Ó J M, Miyagaki O H. Concentration phenomena for fractional elliptic equations involving exponential critical growth. Advanced Nonlinear Studies, 2016, 16(4): 843-861 [3] Alves C O, Figueiredo G M. Multiplicity and concentration of positive solutions for a class of quasilinear problems with critical exponential growth in $\mathbb R^N.$ J Differential Equations, 2009, 246: 1288-1311 [4] Alves C O, Figueiredo G M. Existence and multiplicity of positive solutions to a $p$-Laplacian equation in $\mathbb R^N.$ Differential Integral Equations, 2006, 19: 143-162 [5] Alves C O, Figueiredo G M. Multiplicity of positive solutions for a quasilinear problem in $\mathbb{R}^N$ via penalization method. Adv Nonlinear Stud, 2005, 5: 551-572 [6] Alves C O, Miyagaki O H. Existence and concentration of solution for a class of fractional elliptic equation in $\mathbb R^N$ via penalization method. Calc Var, 2016, 55(3): Article 47 [7] Ambrosetti A, Felli V, Malchiodi A. Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity. J Eur Math Soc, 2005, 7: 117-144 [8] Ambrosio V. Multiplicity of positive solutions for a class of fractional Schrödinger equations via penalization method. Ann Mat Pura Appl, 2017, 196(4): 2043-2062 [9] Ambrosio V. Concentrating solutions for a class of nonlinear fractional Schrödinger equations in $\mathbb R^N.$ Rev Math Iberoam, 2019, 5: 1367-1414 [10] Ambrosio V, Figueiredo G M, Isernia T. Existence and concentration of positive solutions for $p$-fractional Schrödinger equations. Annali di Matematica Pura ed Applicata, 2020, 199: 317-344 [11] Ambrosio V. On the Pohozaev identity for the fractional $p$-Laplacian operator in $\mathbb R^N.$ Bull London Math Soc, 2024, 56(6): 1999-2013 [12] Ambrosio V, Isernia T. Multiplicity and concentration results for some nonlinear Schrödinger equations with the fractional $p$-Laplace. Discrete & Continuous Dynamical Systems - A, 2018, 38(11): 5835-5881 [13] Ambrosio V, Isernia T. On the multiplicity and concentration for $p$-fractional Schrödinger equations. Appl Math Lett, 2019, 95: 13-22 [14] Ambrosio V, Isernia T, Radulescu V D. Concentration of positive solutions for a class of fractional p-Kirchhoff type equations. Proc Roy Soc Edinburgh Sect A, 2021, 151(2): 601-651 [15] Antontsev S N, Shmarev S I. Elliptic equations and systems with nonstandard growth conditions: Existence, uniqueness and localization properties of solutions. Nonlinear Anal.2006, 65: 722-755 [16] Bisci G M, Thin N V, Vilasi L. On a class of nonlocal Schrödinger equations with exponential growth. Advances in Differential Equations, 2022, 27(9/10): 571-610 [17] Brezis H. How to recognize constant functions. A connection with Sobolev spaces. Russ Math Surv, 2002, 57: 693-708 [18] Bucur C, Squassina M. An asymptotic expansion for the fractional $p$-Laplacian and for gradient-dependent nonlocal operators. Communications in Contemporary Mathematics, 2022, 24: 2150021 [19] Chen Y, Levine S, Rao M. Variable exponent, linear growth functionals in image restoration. SIAM J Appl Math, 2006, 66(4): 1383-1406 [20] Chen S, Li L, Yang Z. Multiplicity and concentration of nontrivial nonnegative solutions for a fractional Choquard equation with critical exponent. RACSAM, 2020, 114: Article 33 [21] D'Avenia P, Ji C. Multiplicity and concentration results for a magnetic Schrödinger equation with exponential critical growth in $\mathbb R^2$. Int Math Res Not IMRN, 2022, 2: 862-897 [22] D'Avenia P, Ji C. Semiclassical states for a magnetic nonlinear Schrödinger equation with exponential critical growth in $\mathbb{R}^{2}$. J Anal Math, 2024, 153: 63-109 [23] De Figueiredo D G, Miyagaki O H, Ruf B. Elliptic equations in $\mathbb R^2$ with nonlinearities in the critical growth range. Calc Var, 1995, 3: 139-153 [24] Del Pezzo L M, Quaas A. A Hopf's lemma and a strong minimum principle for the fractional $p$-Laplacian. J Differential Equations, 2017, 263(1): 765-778 [25] Del Teso F, Gómez-Castro D, Vázquez J L. Three representations of the fractional $p$-Laplacian: semigroup, extension and Balakrishnan formulas. Fract Calc Appl Anal, 2021, 24(4): 966-1002 [26] Ding Y H, Liu X Y. Simiclassical solutions of Schrödinger equations with magnetic fields and critical nonlinearities. Manuscripta Math, 2013, 140: 51-82 [27] Do Ó J M, Gloss E, Sani F. Spike solutions for nonlinear Schrödinger equations in 2D with vanishing potentials. Annali di Matematica Pura ed Applicata, 2019, 198: 2093-2122 [28] Esry B D, Greence C H, Burke J J P, Bohn J L. Hartree-Fock theory for double condenstates. Phys Rev Lett, 1997, 78: 3594-3597 [29] Figueiredo G M, Bisci G M, Servadei R. The effect of the domain topology on the number of solutions of fractional Laplace problems. Calc Var, 2018, 57: Article 103 [30] Floer A, Weinstein A. Non spreading wave packets for the cubic Schrödinger equation with a bounded potential. J Funct Anal, 1986, 69: 397-408 [31] Frantzeskakis D J. Dark solutions in atomic Bose-Einstein condensates: from theory to experiments. J Phys A, 2010, 43: 213001 [32] Iannizzotto A, Mosconi S, Squassina M. Global Hölder regularity for the fractional $p$-Laplacian. Rev Mat Iberoam, 2016, 32: 1353-1392 [33] Laskin N. Fractional quantum mechanics and Lévy path integrals. Phys Lett A, 2000, 268: 298-305 [34] Laskin N. Fractional Schrödinger equation. Phys Rev E, 2002, 66: 056108 [35] Li S J, Santos C A, Yang M. Existence of semiclassical states for a quasilinear Schrödinger equation on $\mathbb R^N$ with exponential critical growth. Acta Math Sinica, 2016, 32(11): 1279-1296 [36] Lia Q, Yang Z. Multiple solutions for a class of fractional quasi-linear equations with critical exponential growth in $\mathbb R^N.$ Complex Var Elliptic Equ, 2016, 61: 969-983 [37] Miyagaki O H, Pucci P. Nonlocal Kirchhoff problems with Trudinger-Moser critical nonlinearities. NoDEA Nonlinear Differential Equations and Applications, 2019, 26(4): Article 27 [38] Nezza E D, Palatucci G, Valdinoci E. Hitchhiker's guide to the fractional Sobolev spaces. Bull Sci Math, 2012, 136: 521-573 [39] Parini E, Ruf B. On the Moser-Trudinger inequality in fractional Sobolev-Slobodeckij spaces. Atti Accad Naz Lincei Rend Lincei Mat Appl, 2018, 29: 315-319 [40] Pucci P, Xiang M, Zhang B. Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional $p$-Laplacian in $\mathbb R^N.$ Calc Var, 2015, 54: 2785-2806 [41] Rabinowitz P.Minimax Methods in Critical Point Theory with Applications to Differential Equations. Providence: Amer Math Soc, 1986 [42] Rabinowitz P. On a class of nonlinear Schrödinger equations. Z Angew Math Phys, 1992, 43(2): 270-291 [43] Thin N V. Multiplicity and concentration of solutions to a fractional $p$-Laplace problem with exponential growth. Ann Fenn Math, 2022, 47: 603-639 [44] Willem M. Minimax Theorems. Basel: Birkhüser, 1996 [45] Zhang C. Trudinger-Moser inequalities in fractional Sobolev-Slobodeckij spaces and multiplicity of weak solutions to the fractional Laplacian equation. Advanced Nonlinear Studies, 2019, 19: 197-217 [46] Zhang H, Zhang F. Multiplicity and concentration of solutions for Choquard equations with critical growth. J Math Anal Appl, 2020, 481: 123457 [47] Zhang J, Costa D G, Do Ó J M. Semiclassical states of $p$-Laplacian equations with a general nonlinearity in critical case. J Math Phys, 2016, 57: 071504 |