[1] Bellman R, Harris T. On age-dependent binary branching processes. Ann Math, 1952, 55: 280-295 [2] Bienaymé I J. De la loi de multiplication et de la durée des families. Soc Philomat Paris Extraits, 1845, 5: 37-39 [3] Bose A. A law of large numbers for the scaled age distribution of linear birth-and-death processes. Canad J Statist, 1986, 14: 233-244 [4] Bose A, Kaj I. Diffusion approximation for an age-structured population. Ann Appl Probab, 1995, 5: 140-157 [5] Bose A, Kaj I. A scaling limit process for the age-reproduction structure in a Markov population. Markov Process Relat Fields, 2000, 6: 397-428 [6] Champagnat N, Ferrière R, Méléard S.Individual-based probabilistic models of adpatative evolution and various scaling approximations//Dalang R C, Russo F, Dozzi M. Seminar on Stochastic Analysis, Random Fields and Applications V. Basel: Birkhäuser, 2005: 75-113 [7] Crump K, Mode C J. A general age-dependent branching process, I. J Math Anal Appl, 1968, 24: 494-508 [8] Crump K, Mode C J. A general age-dependent branching process, II. J Math Anal Appl, 1969, 25: 8-17 [9] Dawson D A, Gorostiza L G, Wakolbinger A. Occupation time fluctuations in branching systems. J Theoret Probab, 2001, 14(3): 729-796 [10] Dawson D A, Gorostiza L G, Li Z. Nonlocal branching superprocesses and some related models. Acta Appl Math, 2002, 74: 93-112 [11] Dawson D A, Li Z. Skew convolution semigroups and affine Markov processes. Ann Probab, 2006, 34: 1103-1142 [12] Dawson D A, Li Z. Stochastic equations, flows and measure-valued processes. Ann Probab, 2012, 40: 813-857 [13] Doney R A. Age-dependent birth and death processes. Z Wahrscheinlichkeitsth, 1972, 22: 69-90 [14] Doney R A. A limit theorem for a class of supercritical branching processes. J Appl Probab, 1972, 9: 707-724 [15] Fan J Y, Hamza K, Jagers P, Klebaner F C. Convergence of the age structure of general schemes of population processes. Bernoulli, 2020, 26(2): 893-926 [16] Fournier N, Méléard S.A microscopic probabilistic description of a locally regulated population and macroscopic approximations. Ann Appl Probab, 2004, 14: 1880-1919 [17] Hamza K, Jagers P, Klebaner F C. The age structure of population-dependent general branching processes in environments with a high carrying capacity. Proc Steklov Inst Math, 2013, 282(1): 90-105 [18] He H, Li Z, Yang X. Stochastic equations of super-Lévy processes with general branching mechanism. Stochastic Process Appl, 2014, 124: 1519-1565 [19] Hong W M. Longtime behavior for the occupation time processes of a super-Brownian motion with random immigration. Stoch Process Appl, 2002, 102(1): 43-62 [20] Iscoe I. A weighted occupation time for a class of measure-valued branching processes. Probab Th Rel Fields, 1986, 71: 85-116 [21] Iscoe I. Ergodic theory and a local occupation time for measure-valued critical branching Brownian motion. Stochastics, 1986, 18: 197-243 [22] Jagers P. A general stochastic model for population development. Skand Aktuar Tidskr, 1969, 52: 84-103 [23] Jagers P.Branching Processes with Biological Application. New York: Wiley, 1975 [24] Jagers P. General branching processes as Markov fields. Stoch Process Appl, 1989, 32: 183-212 [25] Jagers P, Klebaner F C. Population-size-dependent and age-dependent branching processes. Stoch Process Appl, 2000, 87: 235-254 [26] Jagers P, Klebaner F C. Population-size-dependent, age-structured branching processes linger around their carrying capacity. J Appl Probab, 2011, 48A: 249-260 [27] Ji L, Li Z. Construction of age-structured branching processes by stochastic equations. J Appl Probab, 2022, 59: 670-684 [28] Kaj I, Sagitov S. Limit processes for age-dependent branching particle systems. J Theoret Probab, 1998, 11: 225-257 [29] Kendall D G. Stochastic processes and population growth. J R Statist Soc B, 1949, 11: 230-264 [30] Li Z. Some central limit theorems for super Brownian motion. Acta Math Sci, 1999, 19B: 121-126 [31] Li Z.Continuous-state branching processes with immigration//Jiao Y, (eds). From Probability to Finance. Singapore: Springer, 2020: 1-69 [32] Li Z.Measure-Valued Branching Markov Processes. Heidelberg: Springer, 2022 [33] Metz J A J, Tran V C. Daphnias: From the individual based model to the large population equation. J Math Biol, 2013, 66: 915-933 [34] Oelschläger K. Limit theorems for age-structured populations. Ann Probab, 1990, 18: 290-318 [35] Pardoux E.Probabilistic Models of Population Evolution: Scaling Limits, Genealogies and Interactions. Switzerland: Springer, 2016 [36] Situ R.Theory of Stochastic Differential Equations with Jumps and Applications. Berlin: Springer, 2005 [37] Tang J. Limit theorems for the weighted occupation time for super-Brownian motions on $\mathrm{H}^d$. Progress in Natural Science, 2006, 16(8): 803-807 [38] Tran V C. Large population limit and time behaviour of a stochastic particle model describing an age-structured population. ESAIM Probab Stat, 2008, 12: 345-386 [39] Watson H W, Galton F. On the probability of the extinction of families. J Anthropol Inst Great Britain and Ireland, 1874, 4: 138-144 [40] Xiong J. Super-Brownian motion as the unique strong solution to an SPDE. Ann Probab, 2013, 41: 1030-1054 |