[1] Aldawoud A M.Ramanujan-Type Series for $\frac{1}{\pi}$ with Quadratic Irrationals. Auckland: Massey University, 2012 [2] Aycock A.On proving some of Ramanujan's formulas for $\frac{1}{\pi}$ with an elementary method. arXiv: 1309.1140 [3] Baruah N D, Berndt B C. Eisenstein series and Ramanujan-type series for $1/\pi$. Ramanujan J, 2010, 23(1-3): 17-44 [4] Berkovich A, Chan H H, Schlosser M J. Wronskians of theta functions and series for {$1/\pi$}. Adv Math, 2018, 338: 266-304 [5] Berndt B C, Bhargava S, Garvan F G. Ramanujan's theories of elliptic functions to alternative bases. Trans Amer Math Soc, 1995, 347(11): 4163-4244 [6] Borwein J M, Borwein P B. Class number three Ramanujan type series for $1/\pi$. J Comput Appl Math, 1993, 46(1/2): 281-290 [7] Borwein J M, Borwein P B.More Ramanujan-Type Series for $1/\pi$. Boston: Academic Press, 1988 [8] Borwein J M, Borwein P B.Pi and the AGM. New York: John Wiley & Sons, 1987 [9] Borwein J M, Borwein P B. Ramanujan's rational and algebraic series for $1/\pi$. J Indian Math Soc, 1987, 51: 147-160 [10] Bruinier J H, van der Geer G, Harder G, Zagier D. The 1-2-3 of Modular Forms. Berlin: Springer-Verlag, 2008 [11] Chan H H, Chan S H, Liu Z. Domb's numbers and Ramanujan-Sato type series for $1/\pi$. Adv Math, 2004, 186(2): 396-410 [12] Chan H H, Gee A, Tan V. Cubic singular moduli, Ramanujan's class invariants $\lambda_n$ and the explicit Shimura reciprocity law. Pacific J Math, 2003, 208(1): 23-37 [13] Chan H H, Liaw W C. Cubic modular equations and new Ramanujan-type series for $1/\pi$. Pacific J Math, 2000, 192(2): 219-238 [14] Chan H H, Liaw W C, Tan V. Ramanujan's class invariant $\lambda_n$ and a new class of series for $1/\pi$. J London Math Soc, 2001, 64(1): 93-106 [15] Cooper S, Zudilin W. Hypergeometric modular equations. J Aust Math Soc, 2019, 107(3): 338-366 [16] Guillera J. A method for proving Ramanujan's series for $1/\pi$. Ramanujan J, 2020, 52(2): 421-431 [17] Guillera J. A new method to obtain series for $1/\pi$ and $1/\pi^2$. Experiment Math, 2006, 15(1): 83-89 [18] Guillera J. More hypergeometric identities related to Ramanujan-type series. Ramanujan J, 2013, 32: 5-22 [19] Guillera J. Proof of a rational Ramanujan-type series for $1/\pi$. The fastest one in level 3. Int J Number Theory, 2021, 17(2): 473-477 [20] Guillera J. Proof of Chudnovskys' hypergeometric series for $1/\pi$ using Weber modular polynomials//Bostan A, Raschel K. Transcendence in Algebra, Combinatorics, Geometry and Number Theory. Cham: Springer, 2019: 341-354 [21] Guillera J. Ramanujan series with a shift. J Aust Math Soc, 2019, 107(3): 367-380 [22] Ramanujan S.Collected Papers of Srinivasa Ramanujan. Providence, RI: AMS Chelsea Publishing, 2000 [23] Ramanujan S. Modular equations and approximations to $\pi$. Quart J Math, 1914, 45: 350-372 [24] Vidūnas R. Algebraic transformations of Gauss hypergeometric functions. Funkcial Ekvac, 2009, 52(2): 139-180 [25] Wan J G. Series for $1/\pi$ using Legendre's relation. Integral Transforms Spec Funct, 2014, 25(1): 1-14 |