[1] Chen D X, Lu S Z. $L^p$ boundedness for parabolic Littlewood-Paley operator with rough kernel belonging to $F(S^{(n-1)})$. Acta Math Sci, 2011, 31: 343-350 [2] Cheng M D, Deng D G, Long R L. Real Analysis.Beijing: High Education Press, 2008 [3] Coifman R, Rochberg R, Weiss G. Factorization theorems for Hardy spaces in several variables. Ann Math, 1976, 103: 611-635 [4] Connett W C.Singular integrals near $L^1$//Weiss G, Wainger S. Harmonic Analysis in Euclidean Spaces. Providence, RI: American Mathematical Society, 1979 [5] Deng D G, Yan L X. $L^p$ boundedness of commutators of Calderón-Zygmund singular integral operators, Adv Math (China), 1998, 3(3): 259-269 [6] Deng D G, Yan L X, Yang Q X. $L^{2}$ boundedness of commutators of Calderón-Zygmundsingular integral operators. Progress in Natural Science, 1998, 8(4): 416-427 [7] Fefferman C, Stein E M. Some maximal inequalities. Amer Math, 1971, 93: 107-115 [8] Grafakos L, Stefanov A.Convolution Calderón-Zygmund singular integral operators with rough kernels// Bray W O, Stanojević $\check{\rm C}$ V. Analysis of Divergence. Boston, MA: Birkhäuser Boston, 1999 [9] Guo W, He J, Wu H. Limiting weak-type behaviors for certain classical operators in harmonic analysis. Potential Anal, 2021, 54(2): 307-330 [10] Guo X, Hu G. On the commutators of singular integral operators with rough convolution kernels. Canad J Math, 2016, 68(4): 816-840 [11] Meyer Y.Ondelettes et opérateurs, I et II. Paris: Hermann, 1991 [12] Meyer Y, Yang Q X. Continuity of Calderón-Zygmund operators on Besov or Triebel-Lizorkin spaces. Anal Appl, 2008, 6(1): 51-81 [13] Triebel H.Theory of Function Spaces. Basel: Birkhäuser-Verlag, 1983 [14] Yang Q X, Ding Y. Fast algorithm for Calderón-Zygmund operators: convergence speed and rough kernel. Acta Math Sci, 2016, 36(2): 345-359 [15] Yang Q X, Lou Z J. Commutators and rough kernels without zero homogeneous condition. Inter J Wavelets Multiresolu Infor Proc, 2018, 16(5): 289-300 |