|    
[1]  Ahn S K, Fotopoulos S B, He L. Unit root tests with infinite variance errors. Econometric Reviews, 2001, 
20: 461–483 
 
[2]  Chan N H, Tran L T. On the first-order autoregressive process with infinite variance. Econometric Theory, 
1989, 5: 354–362 
 
[3]  Dietz H M. Asymptotic behaviour of trajectory fitting estimators for certain non-ergodic SDE. Stat Infer- 
ence Stoch Process, 2001, 4: 249–258 
 
[4]  Feigin P D. Some comments concerning a curious singularity. J Appl Probab, 1979, 16: 440–444 
 
[5]  Fouque J -P, Papanicolaou G, Sircar K R. Derivatives in Financial Markets with Stochastic Volatility. 
Cambridge: Cambridge University Press, 2000 
 
[6]  Fristedt B. Sample functions of stochastic processes with stationary, independent increments//Ney P, Port 
S, eds. Advances in Probability and Related Topics, Vol 3. New York: Marcel Dekker, 1974: 241–396 
 
[7]  Hu Y, Long H. Least squares estimator for Ornstein-Uhlenbeck processes driven by α-stable motions. To 
appear in Stochastic Processes and Their Applications 
 
[8]  Jain N C. A Donsker-Varadhan type of invariance principle. Z Wahrscheinlichkeitstheorie Verw Gebiete, 
1982, 59: 117–138 
 
[9]  Janicki A, Weron A. Simulation and Chaotic Behavior of -stable Stochastic Processes. New York: Marcel 
Dekker, 1994 
 
[10]  Kallenberg O. On the existence and path properties of stochastic integrals. Ann Probab, 1975, 3: 262–280 
 
[11]  Kallenberg O. Some time change representations of stable integrals, via predictable transformations of 
local martingales. Stochastic Process Appl, 1992, 40: 199–223 
 
[12]  Phillips P C B. Time series regression with a unit root and infinite-variance errors. Econometric Theory, 
1990, 6: 44–62 
 
[13]  Rosinski J, Woyczynski W A. On Ito stochastic integration with respect to p-stable motion: inner clock, 
integrability of sample paths, double and multiple integrals. Ann Probab, 1986, 14: 271–286 
 
[14]  Samorodnitsky G, Taqqu M S. Stable non-Gaussian Random Processes: Stochastic Models with Infinite 
Variance. New York, London: Chapman & Hall, 1994 
 
[15]  Sato K I. L´evy Processes and Infinitely Divisible Distributions. Cambridge: Cambridge University Press, 
1999
  |