|    
[1] Bourgeois A J, Beale J T. Validity of the quasigeostrophic model for large-scale flow in the atmosphere 
and ocean. SIAM J Math Anal, 1994, 25: 1023-1068 
 
[2] Cordoba D. Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation. Ann Math, 
1998, 148: 1135-1152 
 
[3] Charve F. Global well posedness and asymptotics for a geophysical fluid system. Comm in PDE, 2004, 
29: 1919-1940 
 
[4] Constantin P, Majda A, Tabak E. Formation of strong fronts in the 2-D quasigeostrophic thermal active 
scalar. Nonlinearity, 1994, 7: 1495-1533 
 
[5] Constantin P, Majda A, Tabak E. Singular front formation in a model for quasigeostrophic flow. Phys 
Fluids, 1994, 6: 9-11 
 
[6] Cao C, Titi E S. Global well-posedness and finite dimensional global attractor for a 3-D planetary 
geostrophic viscous model. Comm Pure Appl Math, 2003, 56: 198-133 
 
[7] Cao C, Titi E S, Ziane M. A 揾orizontal?hyper-diffusion 3-D thermocline planetary geostrophic model: 
well-posedness and long-time behavior. Nonlinearity, 2004, 17: 1749-1776 
 
[8] Cao C, Titi E S. Global well-posedness of the three-dimensional viscous primitive equations of large-scale 
ocean and atmosphere dynamics. Ann Math, 2007, 166: 245?67 
 
[9] Constantin P, Wu J. Behavior of solutions of 2D quasi-geostrophic equations. SIAM J Math Anal, 1999, 
30: 937?48 
 
[10] Embid P F, Majda A J. Averaging over fast gravity waves for geophysical flows with arbitrary potential 
vorticity. Comm in PDE, 1996, 21: 619-658 
 
[11] Huang D, Guo B. On the existence of atmospheric attractors. Sci in China, Ser D: Earth Sciences, 2008, 
51(3): 469?80 
 
[12] Guo B, Huang D. Existence of weak solutions and trajectory attractors for the moist atmospheric equations 
in geophysics. J Math Phys, 2006, 47: 083508 
 
[13] Guill磂n-Gonz碼lez F, Masmoudi N, Rodr待guez-Bellido M A. Anisotropic estimates and strong solutions for 
the primitive equations. Diff Int Equ, 2001, 14: 1381-1408 
 
[14] Hu C, Temam R, Ziane M. The primimitive equations of the large scale ocean under the small depth 
hypothesis. Disc and Cont Dyn Sys, 2003, 9(1): 97-131 
 
[15] Lions J L. Quelques Méthodes De résolutions Des problèmes Aux Limites Nonlinéaires. Paris: Dunod, 
1969 
 
[16] Lions J L, Temam R, Wang S. New formulations of the primitive equations of atmosphere and applications. 
Nonlinearity, 1992, 5: 237-288 
 
[17] Lions J L, Temam R, Wang S. Models of the coupled atmosphere and ocean (CAO I). Computational 
Mechanics Advance, 1993, 1: 1-4 
 
[18] Lions J L, Temam R, Wang S. On the equations of the large scale ocean. Nonlinearity, 1992, 5: 1007-1053 
 
[19] Majda A. Introduction to PDEs and Waves for the Atmosphere and Ocean. Courant Lecture Notes in 
Mathematics, 9. Amer Math Soc, 2003 
 
[20] Pedlosky J. Geophysical Fluid Dynamics. 2nd ed. Berlin, New York: Springer-Verlag, 1987 
 
[21] Simonnet E, Tachim Medjo T, Temam R. Barotropic-baroclinic formulation of the primitive equations for 
the ocean. Appl Anal, 2003, 82(5): 439-456 
 
[22] Temam R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. 2nd ed. Appl Math Ser, 
Vol 68. New York: Springer-Verlag, 1997 
 
[23] Temam R, Ziane M. Some mathematical problems in geophysical fluid dynamics//Handbook of Mathe- 
matical Fluid Dynamics, 3. Amsterdam: Elsevier, 2005: 535-258
  |