|    
[1]  Ali G, Bini D,  Rionero S. Global existence and relaxation limit for smooth solutions to  the Euler-Poisson model for semiconductors. SIAM J  Math Anal, 2003, 32: 572--587 
           
 
[2]  Anile A M. An extended thermodynamic framework for the hydrodynamic modeling of semiconductors//Marcati P, et al eds. Mathematical Problem in Semiconductors Physics. Pitman Research Notes In Mathematics Series Vol 340. Longman, 1995: 3--41 
 
[3]  Ben Abdallah N,  Degond P. On a hierarchy of macroscopic models for semiconductor. J Math Phys, 1996, 37: 3333--3383 
 
[4]  Ben Abdallah N,  Degond P,  Génieys S. An energy-transport model for semiconductors derived from the Boltzmann equation. J Stat Phys, 1996, 84: 205--231 
 
[5]  Blölekjaer K. Transport equations for electrons in two-valley semiconductors. IEEE Trans Electron Device, 1970, 17:  38--47 
 
[6]  Chen L,  Hsiao L. The solution of  Lyumiks energy transport model in semiconductor science. Math Meth Appl Sci,  2003, 26: 1421--1433 
 
[7]  Chen L,  Hsiao L, Li Y. Large time behavior and energy relaxation time limit of the solutions to an energy transport model in semiconductors. J Math Anal Appl,  2005, 312:  596--619 
 
[8]  Chen L, Hsiao L,  Li Y. Global existence and asymptotic behavior to the solutions of 1-D Lyumkis energy transport model for semiconductors. Quart Appl Math, 2004, 62(2):   337--358 
 
[9]  Degond P. Mathematical modelling of microelectronics semiconductor devices//Proceedings of the Morningside Mathematical Center, Beijng. AMS/IP Studies in Advanced Mathematics. AMS  and Internatinal Press, 2000: 77--109 
 
[10]  Degond P, Génieys S, Jüngel A. A steady-state system in nonequilibrium thermodynamics including thermal and electrical effects. Math Meth Appl Sci,  1998, 21: 1399--1413 
 
[11]  Degond P,  Génieys S,  Jüngel A. A system of parabolic equations in nonequilibrium thermodynamics including thermal and electrical effects. J Math Pures Appl, 1997, 76:  991--1015 
 
[12]  Génieys S. Energy transport model for a non degenerate semiconductor. Convergence of the Hilbert expansion in the linearized case. Asympt Anal,  1998, 17:  279--308 
 
[13]  Gasser  I, Natalini R. The energy transport and the drift diffusion equations as relaxation limits of the hydrodynamic model for semiconductors. Quart Appl Math,  1999, 57(2):  269--282 
       
 
[14]  Ju Q C, Li Y. Global existence and exponential stability of smooth solutions to a multidimensional nonisentropic Euler-Poisson equations. Acta Math Sci, 2004, 24B(3): 434--442 
 
 
[15]  Jüngel A. Regularity and uniqueness of solutions to a parabolic system in nonequilibrium thermodynamics. 
Nonlin Anal, 2000, 41:  669--688 
 
[16]  Jüngel A.  Quasi-hydrodynamic Semiconductor Equations. Basel, Boston, Berlin: Birkhäuser, 2001 
 
[17]  Ladyzhenskaya O A. Solonnikov V A, Ural'tseva N N. Linear and Quasilinear Equations of Parabolic Type. 
  Providence R I:  American Mathematical Society, 1968 
 
[18]  Li Y. Relaxation time limits problem for hydrodynamic models in semiconductor science. Acta Math Sci, 2007,  27B(2):  437--448 
 
[19]  Li Y, Chen L. Global existence and asymptotic behavior of the solution to 1-D energy transport model for semiconductors. J Partial Diff Eqs,  2002, 15(4):  81--95 
 
[20]  Markowich P A,  Ringhofer C,  Schmeiser C. Semiconductors Equations.  Vienna, New York: Springer-Verlag,   1990 
 
[21]  Matsumura  A, Nishida T. The initial value problem for the equations of motion of viscous and heat-conductive gases. J Math Kyoto Univ,  1980, 20: 67--104
  |