|   [1]  Baumann  C E, Oden T J. A discontinuous hp finite element method for the Euler and the Navier-Stokes equations. Int J Numer Methods Fluids, 1999, 31: 79--95 
 
[2] Biswas R,  Devine K, Flaherty J. Parallel, adaptive finite element methods for conservation laws. Appl Numer Math, 1994, 14:  255--283 
 
[3]  Barth T,  Frederickson P. High order solution of the Euler equations on unstructured grids using quadratic reconstruction. AIAA Paper, No 90-0013, 1990 
 
[4]  Cai W,  Gottlieb D,  Shu C -W. Non-oscillatory spectral Fourier methods for shock wave calculations. Math Comput, 1989, 52:  389--410 
 
[5]  Cockburn B,  Shu C -W. The TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws V: multidimensional systems. J Comput Phys, 1998, 141:  199--224 
 
[6]  Cockburn B,  Lin  S -Y,  Shu C -W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J Comput Phys, 1989, 84:  90--113 
 
[7]  Cockburn B,  Shu C -W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math Comp, 1989, 52:  411--435 
 
[8]  Giannakouros J,  Karniadakis G E. A spectral element-FCT method for the compressible Euler equations. J Comput Phys, 1994, 115:  65--85 
 
[9]  Harten A. High resolution scheme for hyperbolic conservation laws. J Comput Phys, 1983, 49: 357--393 
 
[10]  Harten A,  Engquist B, Osher S, Chakravarthy S. Uniformly high order accurate essentially non-oscillatory schemes, III. J Comput Phys, 1987, 71:  231--303 
 
[11]  Hesthaven J S, Gottlieb D. A stable penalty method for the compressible Navier-Stokes equations. I. Open boundary conditions. SIAM J Sci Comput, 1996, 17(3): 579--612 
 
[12]  Hesthaven J S. A stable penalty method for the compressible Navier-Stokes equations. II. One dimensional domain decomposition schemes.  SIAM J Sci Comput, 1997, 18(2): 658--685 
 
[13]  Hesthaven J  S. A stable penalty method for the compressible NavierStokes equations. III. Multi-dimensional domain decomposition schemes. SIAM J Sci  Comput, 1999, 20(1): 62--93 
 
[14]  Houston P,  Schwab C, Suli E. Stabilized hp-finite element methods for first-order hyperbolic problems. SIAM J Numer Anal, 2000, 37(5): 1618--1643 
 
[15]  Hu C -Q,  Shu C -W. Weighted essentially non-oscillatory schemes on triangular meshes. J Comput Phys, 1999, 150: 97--127 
 
[16]  Jiang G -S,  Shu C -W.  Efficient implementation of weighted ENO schemes. J Comput Phys, 1996, 126: 202--228 
 
[17]  Karniadakis G E,  Bullister E T,  Patera A T. A spectral element method for solution of two- and three dimensional time dependent Navier-Stokes equations//Finite Element Methods for Nonlinear Problems. New York/Berlin:  Springer-Verlag, 1985:  803 
 
[18]  Kopriva D A, Kolias J H.  A conservative staggered-grid Chebyshev multidomain method for compressible flows. J Comput Phys, 1996, 125:  244--261 
 
[19]  Kreiss  H O, Olinger J. Methods for the approximate solution of time-dependent problems. GARP Publ Ser, Vol 10. GARP, Geneva, 1973 
 
[20]  Lax P.  Weak solutions of nonlinear hyperbolic equations and their numerical  computations. Comm Pure Appl Math, 1954, 7:  159--193 
 
[21]   Lin G,  Karniadakis G E. A discontinuous Galerkin method for two-temperature plasmas. Comput Meth Appl Mech, 2006, 195(25--28): 3504--3527 
 
[22]  Liu X -D,  Osher S,  Chan T.  Weighted essentially non-oscillatory schemes. J Comput Phys, 1994, 115: 200--212 
 
[23]  Liu Y -J. Central schemes on overlapping cells. J Comput Phys, 2005, 209:  82--104 
 
[24]  Liu Y -J, Shu C -W, Tadmor E, Zhang M -P. Central discontinuous Galerkin methods on overlapping cells with a non-oscillatory hierarchical reconstruction. SIAM J Numer Anal, 2007, 45: 2442--2467 
 
[25]  Liu Y -J, Shu C -W, Tadmor E, Zhang M -P. Non-oscillatory hierarchical reconstruction for central and finite  volume schemes. Comm Comput Phys, 2007, 2:  933--963 
[26]  Liu Y -J, Shu C -W, Xu  Z -L. Hierarchical reconstruction with up to second degree remainder for solving nonlinear conservation law. 
Nonlinearity,  2009, in press 
[27]  Lomtev I,  Quillen C B,  Karniadakis G E. Spectral/hp methods for viscous compressible flows on unstructured 2d meshes. J Comput Phys, 1998, 144(2): 325--357 
[28]  Lomtev I,  Karniadakis G E. A discontinuous Galerkin method for the Navier-Stokes equations. Int J Numer Methods Fluids, 1999, 29: 587--603 
[29]  Mavriplis D J,  Venkatakrishnan V. A unified multigrid solver for the Navier-Stokes equations on mixed element meshes. AIAA-95-1666, San Diego, CA, 1995 
[30]  Oden T J,  Babuska I, Baumann C E. A discontinuous hp finite element method for diffusion problems. J Comput Phys, 1998, 146: 491--519 
[31]  Patera A  T. A spectral method for fluid dynamics: Laminar flow in a channel expansion. J Comput Phys, 1984, 54:  468--488 
[32]  Qiu  J, Shu C -W. Runge-Kutta discontinuous Galerkin method using WENO limiters. SIAM J Sci Comput, 2005, 26: 907--929 
[33]  Reed W,  Hill T. Triangular mesh methods for the neutron transport equation. Tech report la-ur-73-479, Los Alamos Scientific Laboratory, 1973 
[34]  Sherwin  S J, Karniadakis G  E. Tetrahedral hp finite elements: Algorithms and flow simulations. J Comput Phys, 1995, 124(1): 14--45 
[35]  Sherwin  S J,  Karniadakis G E. A triangular spectral element method; applications to the incompressible Navier-Stokes equations. 
Comput Meth Appl Mech Eng, 1995, 123(1--4):  189--229 
[36]  Shu C -W.  Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws//Quarteroni A, ed. Cockburn B,  Johnson C,  Shu C -W,  Tadmor E, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics 1697. Berlin: Springer, 1998: 325--432 
[37]  Shu C -W,   Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes. J Comput Phys, 1988, 77:  439--471 
[38]  Shu C -W,  Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes, II.  J Comput Phys, 1989, 83:  32--78 
[39]  Sidilkover D, Karniadakis G E. Non-oscillatory spectral element Chebyshev method for shock wave calculations. J Comput Phys, 1993, 107(1): 10--22 
[40]  van Leer B. Toward the ultimate conservative difference scheme: II. Monotonicity and conservation combined in a second order scheme. 
 J Comput Phys, 1974, 14:  361--370 
[41]  van Leer B. Towards the ultimate conservative difference scheme: IV. A new approach to numerical convection. J Comput Phys, 1977, 23:  276--299 
[42]  van Leer B. Towards the ultimate conservative difference scheme:  V. A second order sequel to Godunov's method. J Comput Phys, 1979,  32: 101--136 
[43]  Wang Z J, Liu Y. Spectral (finite) volume method for conservation laws on unstructured grids III: extension to one-dimensional systems. J Sci Comput, 2004, 20: 137--157 
[44]  Woodward  P,  Colella P. Numerical simulation of two-dimensional fluid flows with strong shocks. J Comput Phys, 1984, 54:  115--173 
[45]  Xu Z -L,  Liu Y -J,  Shu C -W. Hierarchical reconstruction for discontinuous Galerkin methods on unstructured grids with a WENO type linear reconstruction and partial neighboring cells. J Comput Phys, 2009, 228:  2194--2212 
[46]  Xu Z -L,  Liu Y -J,  Shu C -W. Hierarchical reconstruction for spectral volume method on unstructured grids. J Comput Phys, 2009, 228:  5787--5802 
[47]   Warburton  T C, Karniadakis G E. A discontinuous Galerkin method for the viscous MHD equations. J Comput Phys, 1999, 152: 608--641 
[48]  Weatherill  N P, Hassan O. Efficient three-dimensional Delaurnay triangularisation with automatic point creation and imposed boundary constaints. Int J Numer Methods Eng, 1994, 37: 2005  |