|   [1]  Browkin J. Elements of small order in K2F//Algebraic K-Theory, Lecture Notes in Math,  Vol 966. Berlin, Heidelberg, New York: Springer-Verlag, 1982: 1--6 
  
[2] Urbanowicz J. On elements of given orders in K2F. J Pure Appl Algebra, 1988, 50: 295--307 
  
[3] Qin H. The subgroups of finite order in K2(Q)//Bass H, Kuku A-O, Pedrini C, eds. Algebraic K-Theory and its Applications. Singapore: World Scientific, 1999: 600--607 
  
[4] Qin H. Elements of finite order in K2 of fields. Chin Sci Bull, 1994, 39: 449--451 
[5]  Xu K, Qin H. Some elements of finite order in K2(Q) (Chinese). Chin Ann Math Ser A, 2001, 22(5): 563--570 
[6]  Xu K, Qin H. Some diophantine equations over Z[i ] and Z[√-2] with applications to K2 of a field. Comm  Algebra, 2002, 30: 353--367 
[7]  Xu K, Qin H. A class of torsion elements in K2 of a local field. Science in China, Ser A, 2003, 46(1): 24--32 
[8]  Xu K. Neither G9(Q) nor G11(Q) is a subgroup of K2(Q). Northeast Math J, 2002, 18(1): 59--62 
[9]  Browkin J. Elements of small orders in K2(F), II. Chinese Ann of Math Ser B, 2007, 28(5): 507--520 
[10]  Xu K, Qin H. A conjecture on a class of elements of finite order in K2(Fp). Sci in China, Ser A, 2001, 44(4): 484--490 
[11]  Merkurjev A S. On the torsion in K2 of local fields. Ann Math, 1983, 118: 375--381 
[12] Guo X. The torsion elements in K2 of some local fields. Acta Arith, 2007, 127(1): 97--102 
[13]  Browkin J. The functor K2 for the ring of integers of a number field. Banach Center Publ, 1982, 9: 187--195 
[14]  Browkin J, Gangl H. Tame and wild kernels of quadratic imaginary number fields. Math Comp, 1999, 68(225): 291--305 
[15]  Hurrelbrink J. On the wild kernel. Arch Math (Basel), 1983, 40: 316--318 
   |