|   [1]  Baksalary J K, Markiewicz A. A matrix inequality and admissibility of linear estimator with respect to the mean square error matrix criterion. Linear Algebra Appl, 1989, 112: 9--18 
[2] Cohen A. All admissibility estimates of the mean vector. Ann Math Statist, 1966, 37: 458--463 
[3] Deng Q R, Chen J B. Admissibility of nonhomogeneous linear estimators in linear model with respect to an incomplete ellipsoidal restriction under matrix loss function. Chinese Ann Math, 1997, 18A: 33--40 
[4] GroB J, Markiewicz A. Characterizations of admissible linear estimators in the linear model. Linear Algebra Appl, 2004, 388: 239--248 
[5] Hoffmann K. Admissibility of linear estimation with respect to restricted parameter sets. Math Oper Statist Ser Statist, 1977, 8: 425--438 
[6] Hoffmann K. All admissible linear estimators of the regression parameter vecter in the case of an arbitrary parameter subset. J Statist Plann Inference, 1995, 48: 371--377 
[7] LaMotte L R. Admissibility in linear estimation. Ann Math Statist, 1982, 10: 245--255 
[8] Lee J C. Prediction and estimation of growth curves with special covariance structure. J Amer Statist Assoc, 1988, 83: 432--440 
[9] Liu G, Zhang S L. Admissibility of linear estimators of the regression coefficients in the growth curve model. Acta Math  Sci, 2009, 29A: 607--612 (in Chinese) 
[10] Lu C Y. Admissibility of inhomogeneous linear estimators in linear model with respect to an incomplete ellipsoidal restriction. Commun Statist Theory Methods, 1995, 24: 1737--1742 
[11] Mathew T. Admissible linear estimation in singular models with respect to restricted parameter set. Commun Statist Theory and 
Methods, 1985, 14: 491--498 
[12] Markiewicz A. Estimation and experiments comparison with respect to the matrix risk. Linear Algebra Appl, 2002, 354: 213--222 
[13] Marquardt D W. Generalized inverses, ridge regression, biased linear estimation and nonlinear estimation. Technometrics, 1970, 12: 591--612 
[14] Perlman M D. Reduced mean square error estimation for several parameters. Sarkhya B, 1972:  89--92 
[15] Polthoff R F, Roy S N. A generalized multivirate analysis of variance model useful especially for growth cure model. Biometrika, 1964,  51: 313--326 
[16] Qin H, Wu M, Peng J H. Generalized admissibility of linear estimator in multiple linear model with restricted parameter set. Acta Math Sci, 2002, 22A: 427--432 (in Chinese) 
[17] Rao C R. Estimation of parameter in a linear models. Ann Math Statist, 1976, 4: 1023--1037 
[18] Rao C R. Prediction of future observation in growth curve models. Statit Sci, 1987, 214: 434--471 
[19] Rosen D V. The growth curve model: a review. Comm Statist Theor Meth, 1991, 20: 2791--2822 
[20]  Wong C S, Chang H. Estimation in a growth curve model with singular covariance. J Statist Plann Inference, 2001, 97: 323--342 
[21]  Wong C  S, Masaro J, Deng W C. Estimating covariance in growth cueve model. Linear Algebra Appl, 1995, 214: 103--118 
[22]  Wu Q G. Some results on parameter estimation in extended growth curve models. J Statist Plann Inference, 2000, 88: 285--300 
[23]  Zhang B X, Zhu X H. Gauss-Markov and weighted least-squares estimation under a growth curve model. Linear Algebra Appl, 2000,  321: 387--398 
[24] Zhang S L, Gui W H. Admissibility of linear estimators in a growth curve model subject to an incomplete ellipsoidal restriction. Acta Math  Sci, 2008, 28B: 194--200 
[25]  Zhang S L, Qin H. Universal admissibility of linear estimators in growth curve model with respect to restricted parameter sets. Acta Math  Sci, 2008, 28A: 523--529 (in Chinese) 
[26]  Zhu X H, Lu C Y. Admissibility of linear estimators in linear model. Chinese Ann Math, 1987, 8A: 220--226 
   |