|   [1] Chen J, Zhu C J. Decay rates of strong planar rarefaction waves to scalar conservation laws with degenerate viscosity in several space 
dimensions. Tran Amer Math Soc (in press) 
[2]  Chen J, Liu Y H. Decay rates of solutions for the Burgers equation with boundary corresponding to rarefaction waves. Nonlinear Studies, 2006, 13(2): 141--153 
[3]  Grighton  D G. Model equation of nonlinear acoustics. A Rev Fluid Mech, 1979, 11: 11--33 
[4]  Grighton D G, Scott J F. Asymptotic solutions of model equations in nonlinear acoustics. Phil Trans R Soc Lond, 1979, 292A: 101--134 
[5] Harabetian E. Rarefaction and large time behavior for parabolic equations and monotone schemes. Comm Math Phys, 1988, 114: 527--536 
[6] Hattori Y,  Nishihara K.  A note on the stability of the rarefaction wave of the Burgers equation. Japan J Indust Appl Math, 1991, 8: 85--86 
[7] Il'in  A M,  Oleinik O A. Behavior of the solution of the Cauchy problem for certain quasilinear equations for unbounded increase of the time. Amer Math Soc Transl, 1964, 42: 19--23 
[8] Ito K. Asymptotic decay toward the planar rarefaction waves of solutions for viscous conservation laws in several dimensions. Math Models Methods Appl Sci, 1996, 6: 315--338 
[9]  Kawashima S,  Nishibata S,  Nishikama M. Asymptotic stability of stationary waves for two-dimensional viscous conservation laws in half plane. Discrete and Continuous Dynamical Systems, Supplement, 2003: 469--476 
[10] Kawashima S, Nishibata S,  Nishikama M. Lp energy method of multi-dimensional viscous conservation laws and application to the stability of planar waves. J Hyperbolic Differential Equations, 2004, 1:  581--603 
[11]  Liu T P, Matsumura A,  Nishihara K. Behaviors of solutions for the Burgers equation with boundary corresponding to rarefaction waves. SIAM J Math Anal, 1998, 29:  293--308 
[12]  Majda A.  Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. New York: Springer-Verlag, 1984 
[13]  Matsumara A,  Nishihara K. Global stability of rarefaction waves of a one-dimension model system for compressible viscous gas.  Comm Math Phys, 1992, 144: 325--335 
[14]  Nakamura T.  Asyptotic decay toward the rarefaction waves of solutions for viscous conservation laws in a one-dimensional half space. SIAM J Math Anal, 2003, 34: 1308--1317 
[15]  Nishikawa M,  Nishihara K. Asymptotics toward the planar rarefaction wave for viscous conservation law in two space dimensions. Trans Amer Math Soc, 2000, 352: 1203--1215 
[16] Szepessy A,  Zumbrun K.  Stability of rarefaction waves in viscous media. Arch Rational Mech Anal, 1996, 133(3): 249--298 
[17]  Wang J H, Zhang H. Existence and decay rates of smooth solutions for a non-uniformly parabolic equation. Proc Roy Soc Edinburgh, Sect A, 2002, 132: 1477--1491 
[18]  Xin Z P.  Asymptotic stability of planar rarefaction waves for viscous conservation laws in several dimensions. Trans Amer Math Soc, 1990, 319:  805--820 
[19]  Xin Z P.  Asymptotic stability of rarefaction waves for 2×2 viscous hyperbolic conservation laws - the two modes case. J Differential Equations, 1989, 78: 191--219 
[20] Xu  Y L,  Jiang M N.  Asymptotic stability of rarefaction wave for generalized Burgers equation.  Acta Math Sci, 2005, 25B: 119--129 
[21]  Zhang H.  Existence of weak solutions for a degenerate generalized Burgers equation with large initial data. Acta Math Sci, 2002, 22B:  241--248 
[22]  Zhao H J. Nonlinear stability of strong planar rarefaction waves for the relaxation approximation of conservation laws in several 
space dimensions. J Differential Equations, 2000, 163: 198--222 
[23] Zhu C J. Asymptotic behavior of solutions for p-system with relaxation.  J Differential Equations, 2002, 180:  273--306 
   |