|   [1] Antontsev  S N, Kazhikhov A V,  Monakhov V  N. Boundary Value Problems in Mechanics of Nonhomogeneous Fluids. Studies in Mathematics and its Applications, Vol 22. Amsterdam, New York:  North-Holland Publishing Co, 1990 
[2] Chen G. Global solutions to the compressible Navier-Stokes equations for a reacting mixture. SIAM J Math Anal, 1992, 3:  609--634 
[3]  Deckelnick K. L2 Decay for the compressible Navier-Stokes equations in unbounded domains. Comm Partial Differ Equ, 1993, 18: 1445--1476 
[4] Feireisl E.   The dynamical systems approach to the Navier-Stokes equations of compressible fluid. Preprint 
[5] Feireisl E. Global attractors for the Navier-Stokes equations of three-dimensional compressible flow. C R Acad Sci Paris Sèr I, 2000, 331: 35--39 
[6] Foias  C, Temam R. The Connection Between the Navier-Stokes Equations, Dynamical Systems and Turbulence//Crandall M G, Rabinowitz P H, Turner R E L, eds. Directions in Partial Differential Equations. 
Bostion, Ma: Academic Press,1987:  55--73 
[7] Fujita-Yashima H, Benabidallah R. Unicite' de la solution de l'\'equation monodimensionnelle ou a' symètrie sphèrique d'un gaz visqueux et calorifère. Rendi del Circolo Mat di Palermo Ser II, 1993, 42: 195--218 
[8] Fujita-Yashima H, Benabidallah R. Equationá symètrie sphèrique d'un gaz visqueux et calorifère avec la surface libre. Annali Mat pura ed applicata, 1995, 168: 75--117 
[9] Ghidaglia J M. Finite dimensional behaviour for weakly damped driven Schrödinger equations. Ann Inst Henri Poincarè, 1988, 5: 365--405 
[10] Hale J K.  Asymptotic Behaviour of Dissipative Systems. Mathematical Surveys and Monographs, Number 25.  Providence, Rhode Island: American Mathematical Society, 1988 
[11] Hale J K, Perissinotto Jr A. Global attractor and convergence for one-dimensional semilinear thermoelasticity.  Dynamic Systems and Applications, 1993, 2: 1--9 
[12] Hoff D. Global well-posedness of the Cauchy problem for the Navire-Stokes equations of nonisentropic flow with discontinuous initial data. J Diff Eqs, 1992, 95: 33--74 
[13] Hoff D, Ziane M. Compact attractors for the Navier--Stokes equations of one-dimensional compressible flow. C R Acad Sci Paris Ser I, 1999, 328: 239--244 
[14] Hoff D, Ziane M. The global attractor and finite determining nodes for the Navier--Stokes equations of compressible flow with singular initial data. Indiana Univ Math J, 2000, 49: 843--889 
[15] Hsiao  L, Luo T. Large-time behaviour of solutions for the outer pressure problem of a viscous heat-onductive one-dimensional real gas. Proc Roy Soc Edinburgh Sect A, 1996, 126: 1277--1296 
[16] Jiang  S. On the asymptotic behaviour of the motion of a viscous, heat-conducting, one-dimensional real gas. Math Z, 1994, 216: 317--336 
[17] Jiang  S. Global spherically symmetric solutions to the equations of a viscous polytropic ideal gas in an exterior domain. Comm Math Phys, 1996, 178: 339--374 
[18] Jiang  S. Large-time behavior of solutions to the equations of a viscous polytropic ideal gas. Ann Mate Pura Appl, 1998, 175: 253--275 
[19] Kawashima  S, Nishida T. Global solutions to the initial value problem for the equations of one-dimensional motion of viscous polytropic gases. J Math Kyoto Univ, 1981, 21: 825--837 
[20] Kazhikhov  A V.  To a theory of boundary value problems for equations of one-dimensional nonstationary motion of viscous heat-conduction gases. Din Sploshn Sredy, 1981, 50:  37--62 (in Russion) 
[21] Kazhikhov  A V. Cauchy problem for viscous gas equations. Siberian Math J, 1982, 23: 44--49 
[22] Kazhikhov  A V, Shelukhin V V.  Unique global solution with respect to time of initial boundary value problems for one-dimensional equations of a viscous gas. J Appl Math Mech, 1977, 41: 273--282 
[23] Lions P L. Mathematical Topics in Fluid Dynamics: Vol 2: Compressible Models. Oxford Lecutre Series in Mathematics and its Applications, Vol 2, No 10. Oxford: Oxford Science Publication, 1998 
[24] Matsumura A, Nishida T. The initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids. Proc Japan Acad Ser A, 1979, 55: 337--342 
[25] Matsumura A, Nishida T. The initial boundary value problems for the equations of motion of compressible viscous and heat-conductive gases. J Math Kyoto Univ, 1980, 20:  67--104 
[26] Matsumura A, Nishida T. Initial boundary value problems for the equations of motion of general fluids//Glowinski G,  Lions J L,  eds. Computing Meth in Appl Sci and Engin V.  Amsterdam:  NorthHolland, 1982: 389--406 
[27] Matsumura A, Nishida T. Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids. Comm Math Phys, 1983, 89:  445--464 
[28] Matsumura A, Nishida T. The initial value problem for the equations of motion of compressible viscous and heat-conductive gases. Proc Japan Acad Ser A, 1979, 55:  337--342 
[29] Matsumura A, Nishida T. The initial value problem for the equations of motion of viscous and heat-conductive gases. J Math Kyoto Univ, 1980, 20:  67--104 
[30] Nagasawa T.  On the one-dimensinal motion of the polytropic ideal gas non-fixed on the boundary. J Diff Equ,  1986, 65:  49--67 
[31] Nikolaev V B. On the solvability of mixed problem for one-dimensional axisymmetrical viscous gas flow. Dinamicheskie zadachi Mekhaniki sploshnoj sredy, 63 Sibirsk. Otd Acad Nauk SSSR, Inst Gidrodinamiki, 1983 (Russian) 
[32] Okada M, Kawashima S. On the equations of one-dimensional motion of compressible viscous fluids. J Math Kyoto Univ, 1983, 23:  55--71 
[33] Padula M.  Stability properties of regular flows of heat-conducting compressible fluids. J Math Kyoto Univ, 1992, 32: 401--442 
[34] Qin Y. Global existence and asymptotic behaviour of solutions to a system of equations for a nonlinear one-dimensional viscous heat-conducting real gas. Chin Ann Math, 1999, 20A(3): 343--354 (in Chinese) 
[35] Qin Y. Global existence and asymptotic behaviour of solutions to nonlinear hyperbolic-parabolic coupled systems with arbitrary initial data[D]. Fudan University, 1998 
[36] Qin Y. Global existence and asymptotic behaviour for the solutions to nonlinear viscous, heat-conductive, one-dimensional real gas. Adv Math Sci Appl, 2000, 10: 119--148 
[37] Qin Y. Global existence and asymptotic behaviour for a viscous, heat-conductive, one-dimensional real gas with fixed and thermally insulated endpoints. Nonlinear Analysis TMA,  2001, 44: 413--441 
[38] Qin Y. Global existence and asymptotic behaviour of solution to the system in one-dimensional nonlinear thermoviscoelasticity. Quart Appl Math, 2001, 59: 113--142 
[39] Qin Y. Global existence and asymptotic behaviour for a viscous, heat-conductive, one-dimensional real gas with fixed and constant temperature boundary conditions. Adv Diff Eqs, 2002, 7: 129--154 
[40] Qin Y.  Exponential stability for the compressible Navier--Stokes equations. preprint 
[41] Qin Y. Exponential stability for a nonlinear one-dimensional heat-conductive viscous real gas. J Math Anal Appl,  2002, 272: 507--535 
[42] Qin Y, Ma T, Cavalcanti M M, Andrade  D. Exponential stability in H4 for the Navier--Stokes equations of compressible and heat-conductive fluid. Comm Pure Appl Anal, 2005, 4:  635--664 
[43] Qin Y, Rivera J M.  Universal attractors for a nonlinear one-dimensional heat-conductive viscous real gas. 
 Proc Roy Soc Edingburgh A, 2002, 132: 685--709 
[44] Radke R, Zheng  S. Global existence and asymptotic behaviour in nonlinear thermoviscoelasticity. J Diff Eqs, 1997, 134:  46--67 
[45] Sell G R. Global attractors for the three-dimensional Navier-Stokes equations. J Dynam Diff Eqs, 1996, 8: 1--33 
[46] When  W, Zheng S. Maximal attractor for the coupled Cahn-Hilliard Equations. Nonlinear Analysis TMA,  2002,  49: 21--34 
[47] Shen W, Zheng S,  Zhu P. Global existence and asymptotic behaviour of weak solutions to nonlinear thermoviscoelastic system with clamped boundary conditions. Quart Appl Math, 1999, 57:  93--116 
[48]  Sprekels  J, Zheng S. Maximal attractor for the system of a Landau-Ginzburg theory for structural phase transitions in shape memory alloys. Physica D, 1998, 121:  252--262 
[49]  Sprekels J,  Zheng S, Zhu  P.  Asymptotic behaviour of the solutions to a Landau-Ginzburg system with viscosity for martensitic phase transitions in shape memory alloys. SIAM J Math Anal, 1998, 29: 69--84 
[50] Temam R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics.  Appl Math Sci, Vol  68.  New York:  Springer-Verlag, 1988 
[51] Valli  A, Zajaczkowski W M. Navier-Stokes Equations for compressible fluids: global existence and qualitative properties of the solutions in the general case. Comm Math Phys, 1986, 103: 259--296 
[52] Zheng  S. Nonlinear Parabolic Equations and Hyperbolic-Parabolic Coupled Systems. Pitman Series Monographs and Surveys in Pure and Applied Mathematics, Vol  76. London: Longman Group Limited, 1995 
[53] Zheng S, Qin Y. Maximal attractor for the system of one-dimensional polytropic viscous ideal gas. Quart Appl Math, 2001, 59: 579--599 
[54] Zheng  S,  Qin Y.  Universal attractors for the Navier-Stokes equations of compressible and heat-conductive fluid in bounded annular domains in Rn. Arch Rational Mech Anal,  2001, 160: 153--179 
[55] Zheng S, Shen W. Global solutions to the Cauchy problem of the equations of one-dimensional thermoviscoelasticity. J  Partial Differ  Equ, 1989, 2: 26--38  |