|    
[1] Bartolo P,  Benci V, Fortunato D. Abstract critical point theorems and applications to some nonlinear problems with ``strong'' resonance at infinity. Nonlinear Anal, 1983, 7:  981--1012 
 
[2] Cordaro  G. Three periodic solutions to an eigenvalue problem for a class of second order {H}amiltonian systems. Abstr Appl Anal, 2003, 18:  1037--1045 
 
[3] Gasinski  L, Papageorgiou N S. Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems. 
Boca Raton, FL: Chapman and Hall/CRC Press, 2005 
 
[4] Mawhin  J. Forced second order conservation system with periodic nonlinearity. Ann Inst H Poincaré Anal Non Linéaire, 1989, 6(Suppl):  415--434 
 
[5]  Mawhin J, Willem M. Critical Point Theory and Hamiltonian Systems. Applied Mathematical Sciences,  Vol 74. New York:  Springer-Verlag, 1989 
 
[6] Rabinowitz  P H. Periodic solutions of Hamiltonian systems. Comm Pure Appl Math, 1978, 31:  157--184 
 
[7] Showalter  R E. Hilbert Space Methods for Partial Differential Equations. Monographs and Studies in Mathematics,  Vol 1. London: Pitman, 1977 
 
[8] Tang C L,   Wu X P. Periodic solutions for second order systems with not uniformly coercive potential. 
 J Math Anal Appl,  2001, 259:  386--397 
 
[9] Tang C L, Wu X P. Periodic solutions for a class of nonautonomous subquadratic second order Hamiltonian systems. J Math Anal Appl, 2002, 275:  870--882
  |