|    
[1]  Lefebvre A. Atomization and Sprays. Taylor and Francis, 1989 
 
[2] Bayvel L, Orzechowski Z.  Liquid Atomization. Taylor and Francis, 1993 
 
[3] Furusaki S,  Fan L -S,  Garside J. The Expanding World of Chemical Engineering. 2nd ed. Taylor and Francis, 2001 
 
[4]  Deckwer W -D. Bubble Column Reactors.  Wiley, 1992 
 
[5] Prosperetti A, Tryggvason G. Computational Methods for Multiphase Flow. Cambridge University Press, 2007 
 
[6] Glimm J,  Marchesin D,  McBryan O.  A numerical method for two phase ow with an unstable interface.J Comput Phys, 1981, 39: 179--200 
 
[7] Glimm J. Tracking of interfaces in  uid  ow: Accurate methods for piecewise smooth problems, transonic shock and multidimensional  flows//Meyer R E, ed. Advances in Scientific Computing. New York:   Academic Press, 1982 
 
[8] Glimm J,  McBryan O. A computational model for interfaces. Adv Appl Math, 1985, 6: 422--435 
 
[9]  Glimm J,  McBryan O,  Menikoff R,  Sharp D. Front tracking applied to rayleigh-taylor instability. SIAM J Comput, 1986, 7: 230--251 
 
[10] Chern I -L, Glimm J,  McBryan O, Plohr B,  Yaniv S. Front tracking for gas dynamics.  J Comput Phys, 1986, 62: 83--110 
 
[11] Glimm J,  Grove J,  Lindquist B,  McBryan O, Tryggvason G. The bifurcation of tracked scalar waves. SIAM J Sci  Stat Comput, 1988, 9: 61--79 
 
[12] Du J,  Fix B,  Glimm J,  Jia X,  Li X,  Li Y,  Wu L.  A simple package for front tracking. J Comput Phys, 2006, 213:  613--628 
 
[13] Brackbill J U,  Kothe D B,  Zemach C. A continuum method for mod-eling surface tension. J Comput Phys, 1992, 100: 335--354 
 
[14] Osher S,  Sethian J. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys, 1988, 79: 12--49 
 
[15] Jacqmin D.Calculation of two-phase Navier-Stokes ows using phasefeld modeling.  J Comput Phys, 1999, 155:  96--127 
 
[16] Takewaki H, Nishiguchi A, Yabe T. Cubic interpolated pseudo-particle method (CIP) for solving hyperbolic-type equations. J Comput Phys, 1985, 61: 261--268 
 
[17] Unverdi S O, Tryggvason G. A front-tracking method for viscous. incompressible, multiuid ows. J Comput Phys, 1992, 100: 25--37 
 
[18]  Ishii M. Thermouid dynamic theory of two-phase  ows. Eyrolles, 1975 
 
[19] Tryggvason G,  Scardovelli R,  Zaleski S. Direct Numerical Simulations of Gas-Liquid Multiphase Flows. Cambridge University Pres, 2010 
 
[20]  E W, Enquist B. The heterogeneous multiscale methods. Comm Math Sci, 2003, 1:  87--133 
 
[21]  Launder B E, Spalding D B. Lectures in Mathematical Models of Turbulence.  Academic Press, 1972 
 
[22]  Amsden A A,  Harlow F. Transport of turbulence in numerical uid dynamics. J Comput Phys, 1968, 3: 94 
 
[23] Zhang D Z, Prosperetti A.  Ensemble phase-averaged equations for bubbly ows. Phys Fluids, 1994, 6: 2956--2970 
 
[24] Drew D A,  Passman S L. Theory of Multicomponent  Fluids.  Springer, 1999 
 
[25] Crowe C, Sommerfeld M,  Tsuji Y. Multiphase Flows with Droplets and Particles. CRC Press, 1998 
 
[26]  Lu J, Tryggvason G. Effect of bubble deformability in turbulent bubbly up ow in a vertical channel. Phys Fluids, 2008, 20:  040701 
 
[27] Serizawa A,  Kataoka I, Michiyoshi I. Turbulence structure of air-water bubbly  ow{II. local properties. Int J Multiphase Flow, 1975, 2: 235--246 
 
[28]  Serizawa A,  Kataoka I, Michiyoshi I. Turbulence structure of air-water bubbly  ow{III. transport properties. Int J Multiphase Flow, 1975, 2: 247--259 
 
[29] Drew D,  Jr R T L. The virtual mass and lift force on a sphere in rotating and straining inviscid flow.  Int J Multiphase Flows, 1987, 13:  113--121 
 
[30]  Biswas S,  Esmaeeli A, Tryggvason G. Comparison of results from dns of bubbly ows with a two-fluid model for two-dimensional laminar flows. Int J Multiphase Flows, 2005, 31:  1036--1048 
 
[31]  Antal S P,  Lahey R T,  Flaherty J E. Analysis of phase distribution in fully developed laminar bubbly two-phase  flows. Int J Multiphase 
Flow, 1991, 15: 635--652 
 
[32]  Azpitarte O E,  Buscaglia G C. Analytical and numerical evaluation of two-fluid model solutions for laminar fully developed bubbly two-phase 
flows. Chem Eng Sci, 2003, 58: 3765--3776 
 
[33]  Lu J,  Tryggvason G. Numerical study of turbulent bubbly downflows in a vertical channel. Phys Fluids, 2006, 18:103302 
 
[34]  Lu J, Tryggvason G. Effect of bubble size in turbulent bubbly downflow in a vertical channel. Chem Eng Sci, 2007, 62: 3008--3018 
 
[35]  Kunz R F, Gibeling M R M H J, Tryggvason G,  Fontaine A A, Petrie H L, Ceccio S L. Validation of two-fluid eulerian cfd modeling for microbubble drag reduction across a wide range of reynolds numbers. J Fluids Eng, 2007, 129: 66--79 
 
[36]  Patel V C, Rodi W,  Scheuerer G. Turbulence models for near-wall and low reynolds number  flows: A review. AIAA Journal, 1984, 23: 1308--1319 
 
[37]  Biswas S, Tryggvason G. The transient buoyancy driven motion of bubbles across a two-dimensional quiescent domain. Int J Multiphase Flow, 2007, 33: 1308--1319 
 
[38] Palacios J, Tryggvason G. The transient motion of buoyant bubbles in a vertical couette flow.  AMD Contemporary Mathematics Series, 2008, 466: 135--146 
 
[39]  Liovic P, Lakehal D,  Liow J G. Les of turbulent bubble formation and breakup by use of interface tracking//Geurts B, Friedrich R,  M\'etais O, eds. Direct and Large-Eddy Simulation --V, ERCOFTAC Series, Vol 9. Dordrecht:  Kluwer Academic Publishers, 2004 
 
[40] Thomas S,  Esmaeeli A, Tryggvason G. Multiscale computations of thin films in multiphase  flows.  Int J Multiphase Flow, 2010, 36:  71--77 
\REF{ 
[41]} Yoon Y, Baldessari F, Ceniceros H,  Leal L G. Coalescence of two equal-sized deformable drops in an axisymmetric  flow. Phys Fluids, 2007, 19: 102102 
 
[42]  Dai B,  Leal L. G. The mechanism of surfactant effects on drop coalescence. Phys Fluids, 2008, 20: 040804--1--13 
 
[43]  Baldessari F,  Homsy G,  Leal L.  Linear stability of a draining film squeezed between two approaching droplets. J Colloid and Interface Science, 2007, 307: 188--202 
 
[44]  Lowengrub J, Goodman J,  Lee H,  Longmire E,  Shelley M,  Truskinovsky L. Topological transitions in liquid/liquid interfaces//Athanasoponlos I, et al, eds. Free Boundary Problems: Theory and Applications. Chapman & Hall/CRC, 1999: 221
  |