|   [1]  Alencar H, Do Carmo M.  Hypersurfaces with constant mean curvature in spheres. Proc Amer Math Soc, 1994, 120: 1223--1229 
[2]  Aubin T. Some nonlinear problems in Riemannian geometry. Springer Monographs in Mathematics. Berlin Heindelberg: Springer-Verlag, 1998 
[3]  Barbosa N et al. Hypersurfaces of the Euclidean sphere with nonnegative Ricci curvature. Arch Math, 2003, 81: 335--341 
[4]  Do Carmo M, Dacjzer M, Mercuri F. Compact conformally flat hypersurfaces. Tran Amer Math, 1985, 288: 189--203 
[5]  Cheng Q M, Ishikava S.  A characterization of the Clifford torus. Proc Amer Math Soc, 1999, 127: 819--828 
[6]  Cheng Q M. Compact hypersurfaces in a unit sphere with infinite fundamental group. Pacific J Math, 2003, 212: 49--56 
[7]  Chern S S, Do Carmo M, Kobayashi S. Minimal submanifolds of a sphere with second fundamental form of constant length. Funct analysis and related fields. Berlin: Springer-Verlag, 1970:  59--75 
[8]  Hasanis T, Vlachos T.  A pinching theorem for minimal hypersurfaces in a sphere. Arch Math, 2000, 75: 189--203 
[9]  Lawson H B. Local rigidity theorems for minimal hypersurfaces. Ann Math, 1969, 89: 179--185 
[10]   Li H Z.  Hypersurfaces with constant scalar curvatur in space forms. Math Ann, 1996, 305: 665--672 
[11]  Peng C K, Terng C L.  Mimimal hypersurfaces of spheres with constant scalar curvature. Ann Math Stud, 1983, 103: 177--198 
[12]  Simons J. Minimal varieties in Riemannian manifolds. Ann Math, 1968,  88: 62--105 
[13]  Wang Q L, Xia C Y.  Rigidity theorems for closed hypersurfaces in a unit sphere. J Geom Phys, 2005, 55: 227--240 
[14]  Yang  H C, Cheng Q M.  Chern's conjecture on minimal hypersurfaces. Math Z, 1998, 227: 377--390 
[15]  Zhang Y T, Xu S L. The rigidity  of Clifford torus Sm(√m/n) ×Sn-m(√(n-m)/n). Acta Mathematica Scientia, 2008, 28A(1): 128--132  |