|   [1]  Firey  W J.  p-means of convex bodies. Math Scand, 1962, 10(1): 17--24 
[2]  Gardner  R J. Geometric Tomography. Cambridge: Cambridge University Press, 1995 
[3]  Gruber  P M. Approximation of convex bodies//Gruber  P M, Wills J M. Convexity and Its Applications. Basel: Birkhäuser, 1983: 131--162 
[4]  Leichtwei{\ss} K. Affine Geometry of Convex Bodies. Heidelberg: J A Barth, 1998 
[5]  Leng G. S. Affine surface area curvature images for convex bodies. Acta Math Sinica, 2002, 45(2): 797--802  (in Chinese) 
[6]  Lutwak E.  Dual mixed volumes. Pacific J Math, 1975, 58(3): 531--538  
 
[7]  Lutwak E. On some affine isoperimetric inequalities. J Differential Geom, 1986, 56(1):  1--13  
 
[8]  Lutwak E. Centroid bodies and dual mixed volumes. Proc London Math Soc, 1990, 60(2): 365--391 
[9]  Lutwak E. Extended affine surface area. Adv in Math, 1991, 85(2): 39--68  
 
[10]  Lutwak E. The Brunn-Minkowski-Firey Theory I: Mixed Volumes and the Minkowski Problem. J Differential  Geom,1993, 38(2):  131--150 
[11]  Lutwak E, Oliker  V. On the regularity of solutions to a generalization of the Minkowski problem. J Differential Geom, 1995, 41(2): 227--246  
 
[12]  Lutwak E. The Brunn-Minkowski-Firey Theory II: Affine and Geominimal Surface Areas. Adv Math, 1996, 118(2): 244--294  
 
[13]  Petty C M. Affine isoperimetric problems. Ann N Y Acad Sci, 1985, 440(2): 113--127  
 
[14]  Schneider R. Convex Bodies: The Brunn-Minkowski theory. Cambridge: Cambridge University  Press, 1993  
 
[15]  Wang W D,  Leng G S. Lp-dual mixed quermassintgrals. Indian J Pure Appl Math, 2005, 36(3):  177--188  |