|    
[1] Dahmen W, DeVore R,  Scherer K. Multi-dimensional Spline approximation. SIAM J Numer Anal, 1980, 17: 380--402 
 
[2]  Fang Gensun,  Hickernell  F J, Li Huan. Approximation on anisotropic Besov classes with mixed norm by standarded information. J Complexity, 2005, 21: 294--313 
 
[3]  Fang Gensun, Ye Peixin. Computational complexity in worst, stochastic and average case setting on functional approximation problem of multivariate. Acta Mathematica Scientia, 2005, 25B(3): 439--448 
 
[4]  Grover L. A framework for fast quantum mechanical algorithms//Proceedings of the 30th Annual ACM Symposium on the Theory of 
Computing. New York: ACM Press, 1998: 53--62 
 
[5]  Heinrich S. Quantum summation with an application to integration. J Complexity, 2002, 18: 1--50 
 
[6]  Heinrich S. Quantum integration in Sobolev classes. J Complexity, 2003, 19: 19--42 
 
[7]  Heinrich S. Novak E. On a problem in quantum summation. J Complexity, 2003, 18: 1--18 
 
[8]  Heinrich S. Quantum approximation I. Imbeddings of finite-dimensional Lp spaces. J Complexity, 2004, 20: 5--26 
 
[9]  Heinrich S. Quantum approximation II. Sobolev imbeddings. J Complexity, 2004, 20: 27--45 
 
[10]  Hu Xiaofei, Ye Peixin. Quantum complexity of the integration problem for anisotropic classes. J Comput Math, 2005, 23 (3): 233--246 
 
[11]  Luo Junbo, Sun Yongsheng. Optimal recovery and widths of anisotropic Sobolev class of multivariate functions. Adva Math, 1998, 27: 69--77 (in Chinese) 
 
[12]  Nikolskii  S M. Approximation of Functions of Several Variables and Imbedding Theorems. Berlin: Springer-Verlag, 1975 
 
[13]  Novak E. Quantum complexity of integration. J Complexity, 2001, 17: 2--16 
 
[14]  Shor  P W. Introduction to Quantum Computing Algorithms. Boston: Birkhauser, 1999 
 
[15]  Temlyakov V N. Approximation of Periodic Functions. New York: Nova Science, 1993
  |