[1] Actor A. Classical solutions of $SU(2)$ Yang--Mills theories. Rev Mod Phys, 1979, 51: 461--525
[2] Adler S L. Monopoles and projective representations: two areas of influence of Yang-Mills theory on mathematics.
Preprint, arXiv:math-ph/0405049
[3] Arafune J, Freund P G O, Goebel C J. Topology of Higgs fields. J Math Phys, 1975, 16: 433--437
[4] Atiyah M F, Ward R S. Instantons and algebraic geometry. Commun Math Phys, 1977, 55: 117--124
[5] Bayen F, Flato M, Fronsdal C, Lichnerowicz A, Sternheimer D. Deformation theory and quantization. I. Deformations of symplectic structures. Ann Phys, 1978, 111: 61--110
[6] Bayen F, Flato M, Fronsdal C, Lichnerowicz A, Sternheimer D. Deformation theory and quantization. II. Physical applications. Ann Phys, 1978, 111: 111--151
[7] Belavin A A, Polyakov A M, Schwartz A S, Tyupkin Yu S. Pseudoparticle solutions of the Yang-Mills equations. Phys Lett B, 1975, 59: 85--87
[8] Bezryadina A, Eugenieva E, Chen Z. Self-trapping and flipping of double-charged vortices in optically induced photonic lattices. Optics Lett, 2006, 31: 2456--2458
[9] Bogomol'nyi E B. The stability of classical solutions. Sov J Nucl Phys, 1976, 24: 449--454
[10] Bramwell S T, Giblin S R, Calder S, Aldus R, Prabhakaran D, Fennell T. Measurement of the charge and current of magnetic monopoles in spin ice. Nature, 2009, 461: 956--959
[11] Caffarelli L, Yang Y. Vortex condensation in the Chern--Simons Higgs model: an existence theorem. Commun Math Phys, 1995, 168: 321--336
[12] Callias C. Axial anomalies and index theorems on open spaces. Commun Math Phys, 1978, 62: 213--234
[13] Castelnovo C, Moessner R, Sondhi S L. Magnetic monopoles in spin ice. Nature, 2008, 451: 42--45
[14] Chae D, Yu O. Imanuvilov, The existence of nontopological multivortex solutions in the relativistic self-dual Chern--Simons theory. Commun Math Phys, 2000, 215: 119--142
[15] Chae D, Kim N. Topological multivortex solutions of the self-dual Maxwell--Chern--Simons--Higgs system. J Diff Eqs, 1997, 134: 154--182
[16] Chan H, Fu C C, Lin C S. Non-topological multivortex solutions to the self-dual Chern--Simons--Higgs equation.
Commun Math Phys, 2002, 231: 189--221
[17] Chen C C, Lin C S, Wang G. Concentration phenomena of two-vortex solutions in a Chern--Simons model. Ann Sc Norm Super Pisa Cl Sci, 2004, 3: 367--397
[18] Chen R M, Guo Y, Spirn D, Yang Y. Electrically and magnetically charged vortices in the Chern--Simons--Higgs theory. Proc Roy Soc A, 2009, 465: 3489--3516
[19] Chern J L, Chen Z Y, Lin C S. Uniqueness of topological solutions and the structure of solutions for the Chern-Simons system with two Higgs particles. Commun Math Phys, 2010, 296: 323--351
[20] Chern S S, Simons J. Some cohomology classes in principal fiber bundles and their application to Riemannian geometry. Proc Nat Acad Sci USA, 1971, 68: 791--794
[21] Chern S S, Simons J. Characteristic forms and geometric invariants. Ann Math, 1974, 99: 48--69
[22] Cho Y M, Kimm K. Electroweak monopoles. Preprint, arXiv:hep-th/9705213.
[23] Cho Y M, Maison D. Monopole configuration in Weinberg--Salam model. Phys Lett B, 1997, 391: 360--365
[24] Choe K. Uniqueness of the topological multivortex solution in the self-dual Chern-Simons theory. J Math Phys, 2005, 46: 012305
[25] Choe K. Multiple existence results for the self-dual Chern-Simons-Higgs vortex equation. Comm Partial Diff Eqs, 2009, 34: 1465--1507
[26] Choe K, Kim N. Blow-up solutions of the self-dual Chern--Simons--Higgs vortex equation. Ann Inst H Poincarè--Anal Nonlinèaire, 2008, 25: 313--338
[27] S. Coleman, Le monopôle magnètique cinquante ans aprè The magnetic monopole fifty years later]//Gauge Theories in High Energy Physics. Part I, II (Les Houches, 1981). Amsterdam: North-Holland, 1983: 461--552
[28] Curie P. On the possible existence of magnetic conductivity and free magnetism. Séances Soc Phys (Paris), 1894: 76--77
[29] Deser S, Jackiw R, Templeton S. Three-dimensional massive gauge theories. Phys Rev Lett, 1982, 48: 975--978
[30] Deser S, Jackiw R, Templeton S. Topologically massive gauge theories. Ann Phys, 1982, 140: 372--411
[31] Dirac P A M. Quantised Singularities in the electromagnetic field. Proc Royal Soc A, 1931, 133: 60--72
[32] Dunne G. Self-Dual Chern--Simons Theories. Lecture Notes in Physics, Vol 36. Berlin: Springer-Verlag, 1995
[33] Dunne G. Mass degeneracies in self-dual models. Phys Lett B, 1995, 345: 452--457
[34] Dunne G. Aspects of Chern-Simons theory. Preprint, arXiv: hep-th/9902115, Les Houches Lectures, 1998
[35] Dziarmaga J. Low energy dynamics of [U(1)]N Chern--Simons solitons. Phys Rev D, 1994, 49: 5469--5479
[36] Dziarmaga J. Only hybrid anyons can exist in the broken symmetry phase of nonrelativistic [U(1)]2 Chern--Simons theory. Phys Rev D, 1994, 50: R2376--R2380
[37] Felsager B. Geometry, Particles, and Fields. Berlin, New York: Springer-Verlag, 1998
[38] Forgacs P Horvath Z, Palla L. Exact multimonopole solutions in the Bogomolny-Prasad-Sommerfied limit. Phys Lett B, 1981, 99: 232--236
[39] Fröhlich J, Marchetti P A. Quantum field theories of vortices and anyons. Comm Math Phys, 1989, 121: 177--223
[40] Georgi H, Glashow S L. Unified weak and electromagnetic interactions without neutral currents. Phys Rev Lett, 1972, 28: 1494--1497
[41] Georgi H, Glashow S L. Unity of all elementary-particle forces. Phys Rev Lett, 1974, 32: 438--441
[42] Gingras M J P. Observing monopoles in a magnetic analog of ice. Science, 2009, 26: 375--376
[43] Ginzburg V L, Landau L D. On the theory of superconductivity//Collected Papers of L. D. Landau (edited by D. Ter Haar), New York: Pergamon, 1965: 546--568
[44] Goddard P, Olive D I. Magnetic monopoles in gauge field theories. Rep Prog Phys, 1978, 41: 1357--1437
[45] Greiner W, Müller B. Quantum Mechanics--Symmetries. 2nd ed. Berlin, New York: Springer-Verlag, 1994
[46] Groenewold H J. On the principles of elementary quantum mechanics. Physica, 1946, 12: 405--460
[47] Han J. Asymptotic limit for condensate solutions in the abelian Chern--Simons--Higgs model. Proc Amer Math Soc, 2003, 131: 1839--1845
[48] Han J, Huh H. Self-dual vortices in a Maxwell-Chern-Simons model with non-minimal coupling. Lett Math Phys, 2007, 82: 9--24
[49] Hirsch M. Differential Topology. New York, Heidelberg: Springer-Verlag,1976
[50] Hong J, Kim Y, Pac P Y. Multivortex solutions of the Abelian Chern--Simons--Higgs theory. Phys Rev Lett, 1990, 64: 2330--2333
[51] Horvathy P A, Zhang P. Vortices in (abelian) Chern-Simons gauge theory. Phys Rep, 2009, 481: 83--142
[52] Huh H. Local and global solutions of the Chern-Simons-Higgs system. J Funct Anal, 2007, 242: 526--549
[53] Humphreys J E. Introduction to Lie Algebras and Representation Theory. New York, Heidelberg: Springer-Verlag, 1972
[54] Inouye S, Gupta S, Rosenband T, Chikkatur A P, Görlitz A, Gustavson T L, Leanhardt A E, Pritchard D E, Ketterle W. Observation of vortex phase singularities in Bose-Einstein condensates. Phys Rev Lett, 2001, 87: 080402
[55] Jackiw R. Quantum meaning of classical field theory. Rev Mod Phys, 1977, 49: 681--707
[56] Jackiw R, Chern S S. Chern--Simons terms//Differential Geometry and Physics. Nankai Tracts Math 10. Hackensack, NJ: World Sci Publ, 2006: 53--62
[57] Jackiw R, Templeton S. How super-renormalizable interactions cure their infrared divergences. Phys Rev D,1981, 23: 2291--2304
[58] Jackiw R, Weinberg E J. Self-dual Chern--Simons vortices. Phys Rev Lett, 1990, 64: 2334--2337
[59] Jacobs L, Khare A, Kumar C N, Paul S K. The interaction of Chern--Simons vortices. Int J Mod Phys A, 1991, 6: 3441--3466
[60] Jaffe A, Taubes C H. Vortices and Monopoles. Boston: Birkhäuser, 1980
[61] Jost J, Wang G. Analytic aspects of the Toda system. I. A Moser-Trudinger inequality. Comm Pure Appl Math, 2001, 54: 1289--1319
[62] Julia B, Zee A. Poles with both magnetic and electric charges in non-Abelian gauge theory. Phys Rev D, 1975, 11: 2227--2232
[63] Kao H C, Lee K. Self-dual SU(3) Chern--Simons Higgs systems. Phys Rev D, 1994, f50: 6626--6632
[64] Kawaguchi Y, Ohmi T. Splitting instability of a multiply charged vortex in a Bose--Einstein condensate. Phys Rev A, 2004, 70: 043610
[65] Khomskii D I, Freimuth A. Charged vortices in high temperature superconductors. Phys Rev Lett, 1995, 75: 1384--1386
[66] Kim C, Lee C, Kao P, Lee B H, Min H. Schrödinger fields on the plane with [U(1)]N Chern--Simons interactions and generalized self-dual solitons. Phys Rev D, 1993, 48: 1821--1840
[67] Kim N. Existence of vortices in a self-dual gauged linear sigma model and its singular limit. Nonlinearity, 2006, 19: 721--739
[68] Kontsevich M. Lecture Notes on Deformation Theory. Berkeley, 1995
[69] Kontsevich M. Formality conjecture//Gutt S, Rawnsley J, Sternheimer D, eds. Deformation Theory and Symplectic Geometry. Math Phys Stud 20. Dordrecht: Kluwer Acad Publ, 1997: 139--156
[70] Kontsevich M. Deformation quantization of Poisson manifolds, I. Lett Math Phys, 2003, 66: 157--216
[71] Kubo R. Wigner representation of quantum operators and its applications to electrons in a magnetic field. J Phys Soc Japan, 1964, 19: 2127--2139
[72] Kumar C N, Khare A. Charged vortex of finite energy in nonabelian gauge theories with Chern--Simons term. Phys Lett B, 1986, 178: 395--399
[73] Lee K, Weinberg E J. Nontopological magnetic monopoles and new magnetically charged black holes. Phys Rev Lett, 1994, 73: 1203--1206
[74] Lai C H, ed. Selected Papers on Gauge Theory of Weak and Electromagnetic Interactions. Singapore: World Scientific, 1981
[75] Lin C S, Ponce A C, Yang Y. A system of elliptic equations arising in Chern--Simons field theory. J Funct Anal, 2007, 247: 289--350
[76] Lin C S, Prajapat J V. Vortex condensates for relativistic abelian Chern-Simons model with two Higgs scalar fields and two gauge fields on a torus. Commun Math Phys, 2009, 288: 311--347
[77] Lucia M, Nolasco M. SU(3) Chern-Simons vortex theory and Toda systems. J Diff Eqs, 2002, 184: 443--474
[78] Macri M, Nolasco M, Ricciardi T. Asymptotics for self-dual vortices on the torus and on the plane: a gluing technique. SIAM J Math Anal, 2005, 37: 1--16
[79] Manton N. Complex structure of monopoles. Nucl Phys B, 1978, 135: 319--332
[80] Manton N, Sutcliffe P. Topological Solitons. Cambridge Monographs on Mathematical Physics, Cambridge: Cambridge Univ Press, 2004
[81] Matsuda Y, Nozakib K, Kumagaib K. Charged vortices in high temperature superconductors probed by nuclear magnetic resonance. J Phys Chem Solids, 2002, 63: 1061--1063
[82] Mehra J, Rechenberg H. The Historical Development of Quantum Theory. Volume 6: The Completion of Quantum Mechanics 1926--1941. New York: Springer-Verlag, 2000
[83] Milnor J W. Topology from the Differentiable Viewpoint. Charlottesville: University Press of Virginia, 1965
[84] Milton K A. Theoretical and experimental status of magnetic monopoles. Rep Progress Phys, 2006, 69: 1637--1711
[85] Morris DJ P, Tennant D A, Grigera S A, Klemke B, Castelnovo C, Moessner R, Czternasty C, Meissner M, Rule K C, Hoffmann J U, Kiefer K, Gerischer S, Slobinsky D, Perry R S. Dirac strings and magnetic monopoles in the spin ice Dy2Ti2O7. Science, 2009, 326: 411--414
[86] Moyal J E. Quantum mechanics as a statistical theory. Proc Cambridge Philosophical Soc, 1949, 45: 99--124
[87] Nielsen H B, Olesen P. Vortex-line models for dual strings. Nucl Phys B, 1973, 61: 45--61
[88] Nolasco M. Nontopological N-vortex condensates for the self-dual Chern--Simons theory. Comm Pure Appl Math,
2003, 56: 1752--1780
[89] Nolasco M, Tarantello G. Double vortex condensates in the Chern--Simons--Higgs theory. Calc Var & PDE's, 1999, 9: 31--91
[90] Nolasco M, Tarantello G. Vortex condensates for the SU(3) Chern--Simons theory. Commun Math Phys, 2000, 213: 599--639
[91] Paul S, Khare A. Charged vortices in an Abelian Higgs model with Chern--Simons term. Phys Lett B, 1986, 17: 420--422
[92] Polyakov A M. Particle spectrum in quantum field theory. JETP Lett, 1974, 20: 194
[93] Prasad M K, Sommerfield C M. Exact classical solutions for the 't Hooft monopole and the Julia--Zee dyon. Phys Rev Lett, 1975, 35: 760--762
[94] Preskill J. Vortices and monopoles//Architecture of Fundamental Interactions at Short Distances. Les Houches, Session XLIV, 1985. Elsevier, 1987: 235--337
[95] Ricciardi T, Tarantello G. Vortices in the Maxwell--Chern--Simons theory. Comm Pure Appl Math, 2000, 53: 811--851
[96] Ryder L H. Quantum Field Theory. 2nd ed. Cambridge, U K: Cambridge Univ Press, 1996
[97] Schechter M, Weder R. A theorem on the existence of dyon solutions. Ann Phys, 1981, 132: 293--327
[98] Schonfeld J S. A massive term for three-dimensional gauge fields. Nucl Phys B, 1981, 185: 157--171
[99] Schwinger J. Sources and magnetic charge. Phys Rev, 1968, 173: 1536--1544
[100] Schwinger J. A magnetic model of matter. Science, 1969, 165: 757--761
[101] Sokoloff J B. Charged vortex excitations in quantum Hall systems. Phys Rev B, 1985, 31: 1924--1928
[102] Spruck J, Yang Y. Topological solutions in the self-dual Chern--Simons theory: existence and approximation. Ann Inst H Poincaré--Anal non linéaire, 1995, 12: 75--97
[103] Spruck J, Yang Y. The existence of non-topological solitons in the self-dual Chern--Simons theory. Commun Math Phys, 1992, 149: 361--376
[104] Spruck J, Yang Y. Proof of the Julia--Zee theorem. Commun Math Phys, 2009, 291: 347--356
[105] Sutcliffe P. BPS monopoles. Internat J Mod Phys A, 1997, 12: 4663--4706
[106] Tarantello G. Multiple condensate solutions for the Chern--Simons--Higgs theory. J Math Phys, 1996, 37: 3769--3796
[107] Tarantello G. Self-Dual Gauge Field Vortices. Progress in Nonlinear Differential Equations and Their Applications 72. Boston: Birkhäuser, 2008
[108] Taubes C H. The existence of multimonopole solutions to the nonabelian, Yang-Mills-Higgs equations for arbitrary simple gauge groups. Commun Math Phys, 1981, 80: 343--367
[109] Taubes C H. The existence of a non-minimal solution to the SU(2) Yang--Mills--Higgs equations on R3, Part I.
Commun Math Phys, 1982, 86: 257--298
[110] Taubes C H. Min-max theory for the Yang-Mills-Higgs equations. Commun Math Phys, 1985, 97: 473--540
[111] Tchrakian D H. The 't Hooft electromagnetic tensor for Higgs fields of arbitrary isospin. Phys Lett B, 1980, 91: 415--416
[112] t Hooft G. Magnetic monopoles in unified gauge theories. Nucl Phys B, 1974, 79: 276--284
[113] de Vega H J, Schaposnik F. Electrically charged vortices in non-Abelian gauge theories with Chern--Simons term. Phys Rev Lett, 1986, 56: 2564--2566
[114] de Vega H J, Schaposnik F. Vortices and electrically charged vortices in non-Abelian gauge theories. Phys Rev D, 1986, 34: 3206--3213
[115] Weinberg E J. Parameter counting for multimonopole solutions. Phys Rev D, 1979, 20: 936--944
[116] Wells R O. Differential Analysis on Complex Manifolds. New York, Berlin: Springer-Verlag, 1980
[117] Wilczek F. Quantum mechanics of fractional-spin particles. Phys Rev Lett, 1982, 49: 957--959
[118] Wilczek F. Fractional Statistics and Anyon Superconductors. Singapore: World Scientific, 1990
[119] Yang Y. The relativistic non-Abelian Chern--Simons equations. Commun Math Phys, 1997, 186: 199--218
[120] Yang Y. Dually charged particle-like solutions in the Weinberg--Salam theory. Proc Roy Soc A, 1998, 454: 155--178
[121] Yang Y. The Lee--Weinberg magnetic monopole of unit charge: existence and uniqueness. Physica D, 1998, 117: 215--240
[122] ang Y. Coexistence of vortices and antivortices in an Abelian gauge theory. Phys Rev Lett, 1998, 80: 26--29
[123] Yang Y. Strings of opposite magnetic charges in a gauge field theory. Proc Roy Soc A, 1999, 455: 601--629
[124] Yang Y. Solitons in Field Theory and Nonlinear Analysis. Springer Monographs in Mathematics. New York: Springer-Verlag, 2001
[125] Yang Y. On the deformation of some Lie algebras. Acta Math Sci, 1984, 4: 509--517
[126] Zachos C, Fairlie D, Curtright T. Quantum Mechanics in Phase Space. Singapore: World Scientific, 2005
[127] Zwanziger D. Exactly soluble nonrelativistic model of particles with both electric and magnetic charges. Phys Rev, 1968, 176: 1480--1488
[128] Zwanziger D. Quantum field theory of particles with both electric and magnetic charges. Phys Rev, 1968, 176: 1489--1495 |