|   [1]  Huisken G, Sinestrari C. Mean curvature flow singularities for mean convex surfaces. Calc Var Partial Differ Equ, 1999, 8: 1--14 
[2]  Huisken G, Sinestrari C. Convexity estimates for mean curvature flow and singularities of mean convex surfaces.  
 Acta Math, 1999, 183:  45--70 
[3]  Wang X J. Convex  solutions to the mean curvature flow. arXiv: math.DG/0404326v1 (submitted in Ann Math, 2003 
 
[4]  Sheng  W M, Wang X J. Singularity profile in the mean curvature flow. Methods Appl Anal, 2009, 16: 139--155 
[5]  Liu  Y N, Jian H Y. Evolution of hypersurfaces by mean curvature minus an externa force field. Sci China Ser A, 2007,  50(2): 231--239 
[6]  Jian  H Y, Liu Y N. Long-time existence of mean curvature with externa force fields.  Pacific J Math, 2008, 234: 311--325 
 
[7]  Liu  Y N, Jian H Y. A curve flow evolved by a fourth order parabolic equation. Sci China Ser A, 2009, 52(10):  2177--2184 
 
[8]  Schulze F. Evolution of convex hypersurfaces by powers of the mean curvature. Math Z, 2005, 251: 721--733 
 
[9]  Schulze F. Nonlinear Evolution by mean curvature and isoperimetric inequalities. J Differ Geom, 2008, 79: 197--241 
 
[10]  White B. The nature of singularities in mean curvature flow of mean-convex sets. J Amer Math Soc, 2003, 16: 123--138;  197--241 
 
[11]  Gui C F, Jian H Y,  Ju H J. Properties of translating solutions to mean curvature flow. Discrete Contin Dyn Syst,  2010, 28:  441--453 
 
[12]  Jian H Y, Liu Q H, Chen  X Q. Convexity and symmetry of translating solitons in mean curvature flows. Chin Ann 
Math, 2005, 26B: 413--422 
[13]  Altschuler S, Angenent S B, Giga Y. Mean curvature flow through singularities for surfaces of rotation. J Geom Anal, 1995, 5(3):   293--358 
[14]  Wang X J. Interior gradient estimates for mean curvature equations. Math Z, 1998, 228:  73--81 
 
[15]  Jian H Y,  Ju H J. Existence of translating solutions to the flow by  powers of  mean curvature on unbounded domains. Preprint, 2010 
 
[16]  Jian H Y, Ju  H J, Sun W. Traveling fronts of curvature flow with external force field. Commun Pure Appl Anal, 
2010, 9:  975--986 
 
[17]  Aarons M. Mean curvature flow with a forcing term in Minkowski space. Calc Var Partial Differ Equ, 2005, 25:  205--246 
 
[18]  Ecker K. Interior estimates and longtime solutions for mean curvature flow of noncompact spaceike hypersurfaces in Minkowski space. J Differ Geom, 1997, 45: 481--498 
 
[19]  Ecker  K. On mean curvature flow of spacelike hypersurfaces in asymptotical flat spacetimes. J Austral Math Soc Ser A, 1993, 55:  41--59 
 
[20]  Ecker K, Huisken G. Parabolic methods for the construction of spacelike slices of prescribed mean curvature in cosmological spacetimes. Comm Math Phys, 1991, 135:  595--613 
 
[21]  Huisken G, Yau S T. Definition of center of mass for isolated physical system and unique foliations by stable spheres with constant curvature. Invent Math, 1996, 124:  281--311 
 
[22]  Liu Y N, Jian  H Y. Evolution of spacelike hypersurfaces by mean curvature minus external force field in Minkowski space. Advanced Nonlinear Studies, 2009, 9: 513--522 
 
[23]  Jian H Y. Translating solitons of mean curvature flow of noncompact spacelike hypersurfaces in Minkowski space.  J Differ Equ, 2006, 220: 147--162 
 
[24]  Ju H J, Lu J, Jian  H Y. Translating solutions to mean curvature flow with a forcing term in Minkowski space.  Commun Pure Appl Anal, 2010, 9:  967--973 
 
[25]  Guan B, Jian H, Schoen R. Entire spacelike hypersurfaces of constant Gauss curvature in Minkowski space. J Rene Angew Math, 2006, 595:  167--188 
 
[26]  Treibergs A E. Entire spacelike hypersurfaces of constant mean curvature in Minkowski space. Invent Math, 1982,   66: 39--56 
[27]  Li C. Monotonocity and symmetry of solutions of nonlinear elliptic equations on unbounded domains. Commu Partial Differ Equ, 1991, 16: 585--612 
 
[28]  Li Y,  Ni W M. Radial symmetry of  positive solutions of nonlinear elliptic equations in Rn. Comm Part Diff Equ,  1993, 18: 1043--1054 
[29]  Jian  H Y, Wang  X J. Continuity estimates for the Monge-Ampère equation. SIAM J Math Anal, 2007, 39: 608--626 
 
[30]  Jian  H Y,  Wang  X J. Bernsterin theorem and regularity for a class of Monge Ampère equations. preprint, 2010 
 
[31]  Guan  B, Jian H Y. The Monge-Ampère equation with infinite boundary value. Pacific J Math, 2004, 216:  77--94 
 
[32]  Jian H Y. Hessian equations with infinite Dirichlet boundary value. Indiana Univ Math J, 2006, 55:  1045--1062 
 
[33]  Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order. New York:  Springer-Verlag, 1983  |