|   [1]  Adams R A. Sobolev spaces. New York, San Francisco, London: Academic Press, 1975 
 
[2] Adams R A. Compact imbedding of weighted Sobolev spaces on unbounded domain. Journal of Differential Equations, 1971, 9:   325--334  
 
[3] Adams R A. Capacity and Compact Imbedding. Journal of Mathematics and Mechanica, 1970  
 
[4] Amann H. Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications. Math Nachr, 1997, 186:  5--56 
 
[5] Amann H. Linear and quasi-linear equations, 1. Basel: Birkhauser, 1995 
 
[6] Aubin J P. Abstract boundary-value operators and their adjoint.  Rend Sem Mat Univ Padova, 1970, 43:  1--33 
 
[7]  Agarwal R, Shakhmurov V B. Mutipoint problems for degenerate abstract differential equations. Acta Math Hungar,   2009, 123(1/2):  65--89 
 
[8]  Besov O V, P Ilin, V P, Nikolskii S M. Integral representations of functions and embedding theorems. Moscow: Nauka, 1975 
 
[9] Burkholder D L. A geometrical conditions that implies the existence certain singular integral of Banach space-valued functions. Proc conf Harmonic analysis in honor of Antonu Zigmund, Chicago, 1981, Wads Worth, Belmont, 1983:  270--286 
 
[10]  Bourgain J. Some remarks on Banach spaces in which martingale differences are unconditional. Arkiv Math, 1983,  21: 163--168 
 
[11]  Dore G, Yakubov S. Semigroup estimates and non coercive boundary value problems. Semigroup Form, 2000, 60:  93--121 
 
[12]  Denk R, Hieber M, Prüss J. R-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem Amer Math Soc, 2003, 166: 788 
 
[13]  Guliev V S. Embedding theorems for spaces of UMD-valued function spaces. (Russion) Dokl Akad Nauk, 1993, 328(4):   408--410 
 
[14] Guliev V S.  Embedding theorems for weighted Sobolev spaces of B-valued functions. (Russion) Dokl Akad Nauk, 1994, 338(4):   440--443 
 
[15] Hütönen T. Estimates for partial derivatives of vector-valued functions. Illinois J Math, 2007, 51(3):   731--742 
 
[16] Krein S G. Linear differential equations in Banach space. Providence:  American Mathematical Society, 1971 
 
[17] Kree P. Sur les multiplicateurs dans FL aves poids. Grenoble: Annales Ins Fourier, 1966, 16(2): 191--121 
 
[18] Lions J L, Peetre J. Sur une classe d'espaces d'interpolation. Inst Hautes Etudes Sci Publ Math, 1964, 19: 5--68 
 
[19] Lizorkin P I. (Lp, Lq)-Multiplicators of Fourier Integrals.  Doklady Akademii Nauk SSSR, 1963, 152(4):  808--811 
 
[20] Lamberton D. Equations d'evalution lineaires associeees a'des semigroupes de contractions dans less espaces Lp. J Funct Anal, 1987, 72: 252--262 
 
[21] Maz'ya V G. Sobolev spaces. Berlin:  Springer, 1985 
 
[22]  McConnell Terry R. On Fourier Multiplier Transformations of Banach-Valued Functions. Trans Amer Mat Soc, 1984,  285(2):  739--757 
 
[23] Pisier G. Les inegalites de Khintchine-Kahane d'apres C. Borel, Seminare sur la geometrie des espaces de Banach. Paris: Ecole Polytechnique, 1977/1978, 7 
 
[24]  Sobolev S L.Certain applications of functional analysis to mathematical physics. Moscow: Nauka, 1988 
 
[25] Shklyar A Ya. Complate second order linear differential equations in Hilbert spaces. Basel: Birkhauser Verlak, 1997 
 
[26] Shakhmurov V B. Theorems about of compact embedding and applications.  Doklady Akademii Nauk SSSR, 1978,  241(6):  1285--1288 
 
[27] Shakhmurov V B. Imbedding theorems and their applications to degenerate equations. Differential equations, 1988, 24(4):  475--482 
 
[28] Shakhmurov V B. Imbedding theorems for abstract function- spaces and their applications. Mathematics of the USSR-Sbornik, 1987, 134(1/2): 261--276 
 
[29] Shakhmurov V B. Embedding and separable differential operators in Sobolev-Lions type spaces. Mathematical Notes, 2008, 84(6):  906--926 
 
[30]  Shakhmurov V B. Embedding and maximal regular differential operators in Sobolev-Lions spaces. Acta Mathematica Sinica, 2006, 22(5): 1493--1508 
 
[31] Shakhmurov V B. Embedding theorems and\ maximal regular differential operator equations in Banach-valued function spaces, Journal of Inequalities and Applications, 2005, 2(4):  329--345 
 
[32]  Shakhmurov V B. Coercive boundary value problems for regular degenerate differential-operator equations. J Math Anal Appl, 2004, 292(2):  605--620 
 
[33] Triebel H. Interpolation theory. Function spaces. Differential operators. Amsterdam: North-Holland, 1978 
 
[34]  Triebel H. Spaces of distributions with weights. Multipliers in Lp-spaces with weights.  Math Nachr, 1977, 78:  339--356 
 
[35]  Weis L. Operator-valued Fourier multiplier theorems and maximal Lp regularity.  Math Ann, 2001, 319:  735--75 
 
[36]  Yakubov S. A nonlocal boundary value problem for elliptic differential-operator equations and applications.  Integr Equ Oper Theory, 1999, 35: 485--506  
 
[37]  Yakubov S, Yakubov Ya. Differential-operator Equations. Ordinary and Partial  Differential Equations. Boca Raton: Chapmen and Nall/CRC, 2000  |