|    
[1]  Charalambous C D, Hibey J L. Minimum principle for partially observable nonlinear risk-sensitive control problems using measure-valued decompositions. Stoch Stoch Reports, 1996, 57: 247--288 
 
[2]  Cont R, Tankov P. Financial modelling with jump processes. New York: Chapmam Hall/CRC, 2004 
 
[3]  Framstad N C, O ksendal B, Sulem A. A sufficient stochastic maximum principle for optimal control of jump diffusions and applications to finance. Jour Optim Theory Appl, 2004, 121(1): 77--98 (Errata, 2005, 124(2): 511--512) 
 
[4]  James M R. Asymptotic analysis of nonlinear stochastic risk-sensitive control and differential games. Math Cont Sig Syst, 1992, 5: 401--417 
 
[5]  Lim A E B, Zhou X. A new risk-sensitive maximum principle. IEEE Trans Autom Cont, 2005, 50(7): 958--966 
 
[6]  Nagai H, Peng S. Risk-sensitive dynamic portfolio optimization with partial information on infinite time horizon. Ann Appl Proba, 2002,  12(1): 173--195 
 
[7]  Pham H. Optimal stopping of controlled jump diffusion processes: A viscosity solution approach. Jour Math Sys Esti Cont, 1998, 8(1): 1--27 
 
[8]  Shi J. Wu Z. Relationship between MP and DPP for the stochastic optimal control problem of jump diffusions. Appl Math Optim, DOI: 10.1007/S00245-010-9115-8, published on line Forward and backward stochastic optimal control theory with Poisson jumps and its applications. Shandong University PhD Thesis, 2009 
 
[9]  Situ R. A maximum principle for optimal controls of stochastic with random jumps//Proc National Conference on Control Theory and Its Applications. Qingdao, China, 1991 
 
[10]  Tang S, Li X. Necessary conditions for optimal control of stochastic systems with random jumps. SIAM Jour Cont Optim, 1994, 32(5): 1447--1475 
 
[11]  Whittle P. A risk-sensitive maximum principle. Sys Cont Lett, 1990, 15: 183--192 
 
[12]  Whittle P. A risk-sensitive maximum principle: The case of imperfect state observation. IEEE Trans Autom Cont, 1991, 36(7): 793--801 
 
[13]  Yong J, Zhou X. Stochastic Controls: Hamiltonian Systems and HJB Equations. New York: Springer-Verlag, 1999 
 
[14]  Zhou X. Sufficient conditions of optimality for stochastic systems with controllable diffusions. IEEE Trans Autom Cont, 1996, 41(8): 1176--1179
  |