|   [1]  Conway J  H, Curtis R T, Norton S  P, et al. Atlas of Finite Groups. London-New York: Clarendon Press (Oxford), 1985 
[2]  Iiyori N. Sharp charaters and prime graphs of finite groups. Journal of Algebra, 1994, 163: 1--8 
 
[3]  Yamaki H. A conjecture of Frobenius and the sporadic simple groups I. Comm Algebra, 1983, 11: 2513--2518 
 
[4]  Yamaki H. A conjecture of Frobenius and the simple groups of Lie type I. Arch Math, 1984, 42: 344--347 
 
[5]  Yamaki H. A conjecture of Frobenius and the simple groups of Lie type II. Journal of Algebra, 1985, 96: 391--396 
[6]  Yamaki H. A conjecture of Frobenius and the sporadic simple groups II. Math Comp, 1986, {\bf 46}: 391--396; Supplement, Math Comp, 1986, 46: S43--S46 
 
[7]  Moghaddamfar A  R, Zokayi A R,  Darafsheh M  R. A  characterization of finite simple groups by the degrees of vertices of their prime graphs.  Algebra Colloquium, 2005, 12(3): 431--442 
 
[8]  Zhang L C, Shi W J. OD-Characterization  of  the projective special linear  group L2(q).  Algebra Colloquium (to appear) 
 
[9]  Zhang L C, Shi W J. OD-Characterization of almost simple groups related to  L2(49). Archivum Mathematicum (BRNO), 2008, Tomus 44: 191--199 
 
[10]  Moghaddamfar A  R, Zokayi A R. Recognizing finite groups  through order and degree pattern. Algebra Colloquium, 2008, 15(3): 449--456 
 
[11]  Zhang L  C, Shi W J. OD-Characterization of simple K4-groups. Algebra Colloquium, 2009, 16(2):  275--282 
 
[12]  Zhang L C, Shi W J,  Wang L  L, et al. OD-Characterization of A16. Journal of  Suzhou University(Natural Science Edition), 2008, 24(2): 7--10 
 
[13]  Moghaddamfar A  R,  Zokayi A  R. OD-Characterization of alternating and symmetric groups of degrees 16 and 22. Frontiers of Mathematics in China, 2009, 4(4): 669--680 
 
[14]  Hoseini A A, Moghaddamfar A  R. Recognizing alternating groups Ap+3 for certain primes p by their orders and degree patterns. Frontiers of Mathematics in China, 2010, 5(3): 541--553 
 
[15]  Moghaddamfar A  R, Rahbariyan S. More on the OD-characterizabition of a finite group. Algebra Colloquium (to appear)  
 
[16]  Zhang L C, Shi W J. OD-Characterization of all simple groups whose orders are less than  108. Frontiers of Mathematics in China, 2008, 3(3): 461--474 
 
[17]  Akbari M, Moghaddamfar A R, Rahbariyan S. A characterization of some finite simple groups through their orders and degree patterns. Algebra Colloquium (to appear) 
 
[18]  Zhang L  C, Shi W J, Shao C G, et al. OD-Characterization of the simple group L3(9). Journal of Guangxi University (Natural Science Edition), 2009, 34(1): 120--122 
 
[19]  Zhang L  C, Shi W J. OD-Characterization of almost simple groups related to U3(5).  Acta Mathematica Sinica (English Series),  2010, 26(1): 161--168 
 
[20]  Moghaddamfar A R, Zokayi A  R. OD-Characterization of certain finite groups  having connected prime graphs. Algebra Colloquium, 2010, 17(1): 121--130 
 
[21]  Mazurov V  D. Characterizations of finite groups by sets of orders of their elements. Algebra and Logic, 1997, 36(1): 23--32 
 
[22]  Higman G. Finite groups in which every element has prime power order. J London Math Soc, 1957, 32: 335--342 
 
[23]  Chen G Y. On struture of Frobenius group and 2-Frobenius group. Journal of Southwest China Normal University, 1995, 20(5): 485--487 (in Chinese) 
 
[24]  Thompson J  G. Normal p-complement for finite  groups. Math Z, 1959/1960, 72: 332--354 
 
[25]  Gorenstein D. Finite Groups. New York: Harper and Row, 1980 
 
[26]  Passman D. Permutation Groups. New York: Benjamin Inc, 1968 
 
[27]  Iiyori N, Yamaki H. Prime graph components of the simple groups of Lie type over the field of even charateristic. Journal of Algebra, 1993, 155: 335--343 
 
[28]  Kondratev A S. On prime graph components of finite simple groups. Math Sb, 1989, 180(6): 787--797 
 
[29]  Williams J S. Prime graph components of finite groups. Journal of Algebra, 1981, 69(2): 487--513 
 
[30]  Chen Z M, Shi W  J. On simple Cpp-groups. Journal of Southwest China Normal University, 1993, 18(3): 249--256 (in Chinese) 
 
[31]  Robinson Derek J  S. A Course in the Theory of Groups. 2nd ed. New York-Heidelberg-Berlin: Springer-Verlag, 2003  |