|   [1]  Agarwal R P, Zhang W. Periodic solutions of difference equations with general periodicity. Comput Math Appl, 2001, 42: 719--727 
[2] Coppel W A. The solution of equations by iteration. Proc Camb Philos Soc, 1955, 51: 41--43 
[3] Clark C W.  A delayed recruitment model of population dynamics with an application to baleen whale populations. J Math Biol, 1976, 3: 381--391 
[4] Cull P. Global stability of population models. Bull Math Biol, 1981, 43: 47--58 
[5]  Cull P. Local and global stability for population models. Biological Cybernetics, 1986, 54: 141--149 
[6]  Cull P. Stability of discrete one-dimensional population models.  Bull Math Biol, 1988, 50: 67--75 
 
[7]  Elabbasy E M, Saker S H. Periodic solutions and oscillation of discrete nonlinear delay population dynamics model with external force. IMA J Appl Math, 2005, 70: 753--767 
 
[8]  Braverman E, Saker S H. Permanence, Oscillation and attractivity of the discrete hematopoiesis model with variable coefficients. 
Nonlinear Anal TMA, 2007, 67: 2955--2965 
 
[9]  Braverman E, Saker S H. On the Cushing--Henson conjecture, delay difference equations and attenuate cycles. J Diff Eqns Appl, 2008, 14: 275--286 
 
[10]  Erbe L, Xia H, Yu J S. Global stability of a linear nonautonomous delay difference equation. J Diff Eqns Appl, 1991, 1: 151--161  
 
[11]  Goh B S. Management and analysis of biological populations. New York: Elsevier, 1979 
 
[12]  Grove E A, Koci\'{c} V L, Ladas G, Levins R. Oscillation and stability in a simple genotype selection model. Quart Appl Math, 1994, 52: 499--508 
[13]  Gy\"{o}ri I, Pituk M. Asymptotic stability in a linear delay difference equation//Proceedings of SICDEA. Veszprdm, Hungary, Gordon and Breach Science, Langhorne, PA, 1997  
 
[14]  Ivanov A F. On global stability in a nonlinear discrete model. Nonlinear Anal TMA, 1994, 23: 1383--1389 
 
[15]  Koci\'{c} V L,  Ladas G G. Global Behavior of Nonlinear Difference Equations of Higher Order. Dordrecht: Kluwer Academic Publishers, 1993 
[16]  Kuang Y. Delay Differential Equations with Applications in Population Dynamics. New York: Academic Press, 1993 
[17]  Kovacsv\"{o}lgy I. The asymptotic stability of difference equations. Appl Math Lett, 2000, 13: 1--6 
[18]  Ladas G, Qian C, Vlahos P N, Yan J. Stability of solutions of linear nonautonomous difference equations. Appl Anal, 1991, 41: 183--191 
 
[19]  LaSalle J P. The stability of dynamical systems. Philadelphia: SIAM, 1976 
 
[20]  Levin S A, May R M. A note on difference delay equations. Theor Popul Biol, 1976, 9: 178--187 
 
[21]  Li T Y, Yorke J A. Period three implies chaos. Amer Math Monthly, 1975, 82: 985--992 
 
[22]  Li S, Zhang W. Bifurcations in a second-order difference equation from macroeconomics. J Diff Eqns Appl, 2008, 14: 91--104 
 
[23]  May R M. Biological populations with nonoverlapping generation: stable points, stable cycles and chaos. Science, 1974, 186: 645--647 
[24]  May R M. Simple mathematical models with very complicated dynamics. Nature, 1976, 261: 459--467  
 
[25]  May R M. Nonlinear problems in ecology and resources management//Toos G, Helleman R H G, Stora R. Course 8 in chaotic behavior of deterministic systems. North-Holand publ Co, 1983 
[26]  Saker S H. Qualitative analysis of discrete nonlinear delay survival red blood cells model. Nonlinear Anal Real world Phenomena, 2008, 9: 471--489 
 
[27]  Saker S H. Periodic solutions, oscillation and attractivity of discrete nonlinear delay population model. Math Comp Modeling, 2008,  47: 278--297 
  
[28]  Saker S H, Sun Y G. Oscillatory and asymptotic behavior of positive periodic solutions of nonlinear discrete model exhibiting the Allee 
effect. Appl Math Comp, 2005, 168: 1205--1218 
 
[29] Smith H L. Monotone dynamical Systems, An Introduction to the Theory of Competitive and Cooperatives Systems. Providence: AMS, RI, 1995 
[30]  Thieme H R. Mathematics in Population Biology. New Jersey: Princeton Univ Press, 2003  
 
[31]  Yu J S, Cheng  S S. A stability criterion for a neutral difference equation with delay. Appl Math Lett, 1994, 7: 75--80  
 
[32]  Zhang W, Agarwal R P. Construction of mappings with attactive cycles. Comput Math Appl, 2003, 45: 1213--1219  |