|    
[1]  Arnold A. Random Dynamical Systems. Berlin: Springer, 1998 
 
[2]  Bloom F, Hao W. Regularization of a non-Newtonian system in an unbounded channel:Existence and uniqueness of solutions. Nonl Anal, 2001, 44: 281--309 
 
[3]  Bloom F, Hao W. Regularization of a non-Newtonian system in an unbounded channel:Existence of a maximal compact attractor.   Nonl Anal, 2001, 43: 743--766 
 
[4]  Bates P W, Lu K N, Wang B X. Random attractors for stochastic reaction-diffusion equations on unbounded domains. J Differential equations, 2009, 246:  845--869 
{ 
[5]  Crauel H, Flandoli F. Attractors for random dynamical systems. Probability and Related Fields, 1994, 100:  365--393 
 
[6]  Crauel H. Random point attractors versus random set attractors. J London Math Soc, 2002, 63:  413--427 
 
[7]  Crauel H, Flandoli F. Hausdorff dimension of invariant sets for random dynamical systems. J Dyn Diff Equations, 1998, 10:  449--474 
 
[8]  Crauel H A, Debussche F. Flandoli, Random Attractors. J Dyn Diff Equations, 1997, 9: 307--341 
 
[9]  Caraballo T, Lu K N. Attractors of stochastic lattice dynamical systems with a multiplicative noise. Front Math China, 2008, 3:  317--335 
 
[10]  Debussche A. On the finite dimensionality of random attractors. Stochastic Anal Appl, 1997, 15: 473--492 
 
[11]  Debussche A. Hausdorff dimension of a random invariant set. J Math Pure Appl, 1998, 77:  967--988 
 
[12]  Dong B Q,  Li Y S. Large time behavior to the system of incompressible non-Newtonian fluids in R2. J Math Anal Appl, 2004, 298: 667--676 
 
[13]  Dong B Q, Chen Z M. Time decay rates of non-Newtonian flows in R2. J Math Anal Appl, 2006, 324: 820--833 
 
[14]  Guo B L, Zhu P C.  Partial regularity of suitable weak solution to the system of the incompressible non-Newtonian fluids. J Differential Equations, 2002, 178:  281--297 
 
[15]  Guo B L, Lin G G, Shang Y D. Dynamics of Non-Newtonian fluid. Beijing: National Defence Industry Press, 2006 
 
[16]  Ladyzhenskaya O. New equations for the description of the viscous incompressible fluids and solvability in large of the boundary value problems for them//Boundary Value Problems of Mathematical Physics. AMS, Providence, RI, 1970 
 
[17]  Màlek J, Ne\v{c}as J, Rokyta M, R\.{u}\v{z}i\v{c}k M. Weak and Measure-valued Solutions to Evolutionary PDE. New York: Champman-Hall, 1996 
 
[18]  Pokorn\'{y} M. Cauchy problem for the non-Newtonian viscous incompressible fluids. Appl Math, 1996, 41: 169--201 
 
[19]  Schmalfuss B. The stochastic attractor of the stochastic Lorenz system. Z Angew Math Phy, 1997, 48: 951--975 
 
[20]  Temam R. Infinite Dimensional Dynamical Systems in Mechanics and Physics. Berlin: Springer, 1997 
 
[21]  Zhao C D, Li Y S. H2-compact attractor for a non-Newtonian system in two-dimensional unbounded domains. Nonl Anal, 2004, 7: 1091--1103 
 
[22]  Zhao C D, Zhou S F.  L2-compact uniform attractors for a nonautonomous incompressible non-Newtonian fluid with locally uniformly integrable external forces in distribution space. J Math Phy, 2007, 48: 1--12 
 
[23]  Zhao C D, Zhou S F. Pullback attractors for a non-autonomous incompressible non-Newtonian fluid. J Differential Equations, 2007,  238: 394--425 
 
[24]  Zhao C D, Zhou S F.  Pullback trajectory attractors for evolution equations and application to 3D incompressible non-Newtonian fluid. 
Nonlinearity, 2008, 21: 1691--1717 
 
[25]  Zhao C D, Zhou S F. Sufficient conditions for the existence of global random attractors for stochastic lattice dynamical systems 
and applications. J Math Anal Appl, 2009, 354: 78--95 
 
[26]  Zhao C D,  Li Y S, Zhou S F. Regularity of trajectory attractor and upper semicontinuity of global attractor for a 2D non-Newtonian fluid.  J Differential Equations, 2009, 247:  2331--2363 
 
[27]  Zhao C D, Zhou S F, Li Y S. Existence and regularity of pullback attractors for an incompressible non-Newtonian fluid with delays.  Quar Appl Math, 2009, 67: 503--540
  |