|   [1]  Beirão da Veiga H. A new regularity class for the Navier-Stokes equations in Rn. Chin Ann Math, 1995, 16: 407--412 
 
[2]  Caffarelli L, Kohn R, Nirenberg L. Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm Pure Appl Math, 1982, 35: 771--831 
 
[3]  Chen Z M,  Xin Z. Homogeneity criterion for the Navier-Stokes equations in the whole spaces. J Math Fluid Mech, 2001, 3:  152--182 
 
[4]  Dong B Q, Chen Z M. Regularity criterion of weak solutions to the 3D Navier-Stokes equations via two velocity components. J Math Anal Appl, 2008, 338:  1--10 
 
[5]  Dong B Q, Zhang Z. The BKM criterion for the 3D Navier-Stokes equations via two velocity components. Nonlinear Analysis: Real 
World Applications, 2010, 11: 2415--2421 
 
[6]  Fan J, Jiang S, Ni G. On regularity criteria for the n-dimensional Navier-Stokes equations in terms of the pressure. J Differential Equations, 2008, 244: 2963--2979 
 
[7]  Giga Y. Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system. J Differential Equations, 1986, 62:   186--212 
 
[8]  He C. Regularity for solutions to the Navier-Stokes equations with one velocity component regular. Electronic Journal of Differential 
Equations, 2002, 29:   1--13 
 
[9] Kukavica I, Ziane M. One component regularity for the Navier-Stokes equations. Nonlinearity, 2006, 19: 453--469 
 
[10]  Ladyzhenskaya O A. The Mathematical Theory of Viscous Incompressible Fluids. New York: Gorden Brech, 1969 
 
[11]  Lemariè-Rieusset P G. Recent Developments in the Navier-Stokes Problem. Chapman Hall/CRC, Boca Raton, FL, 2002 
[12]  Leray J. Essai sur les le mouvement d'un liquide visqueux emplissant  l'espace. Acta Math, 1934, 63:  193--248 
[13]  O'Neil R. Convolution operators and L(p, q) spaces. Duke Math J, 1963, 30:  129--142 
[14]  Penel P, Pokorn\'y M. Some new regularity criteria for the Navier--Stokes equations containing gradient of the velocity. Appl Math, 2004, 49: 483--493 
 
[15]  Pokorn'y M. On the result of He concerning the smoothness of solutions to the Navier-Stokes equations. Electron J Diff Equs,  
2003, 10:  1--8 
 
[16]  Serrin J. On the interior regularity of weak solutions of the Navier Stokes equations. Arch Rational Mech Anal, 1962, 9: 187--195 
 
[17]  Struwe M. On partial regularity results for the Navier-Stokes equations. Comm Pure Appl Math, 1988, 41: 437--458 
[18]  Triebel H. Interpolation Theory, Function Spaces, Differential Operators. Amsterdam: North-Holland, 1978 
 
[19]  Zhang X.  A regularity criterion for the solutions of 3D Navier-Stokes equations. J Math Anal Appl, 2008, 346:  336--339 
[20]  Zhou Y. A new regularity criterion for the Navier-Stokes equations in terms of the gradient of one velocity component. Methods Appl Anal, 2002, 9: 563--578 
 
[21]  Zhou Y. A new regularity criterion for weak solutions to the Navier-Stokes equations. J Math Pures Appl, 2005, 84: 1496--1514  |