|   [1] Biermè H, Lacaux C, Xiao Y. Hitting probabilities and the Hausdorff dimension of the inverse images of anisotropic Gaussian random fields. Bull London Math Soc, 2009, 41: 1--21 
[2] Chen Z, Liu S. Dimension of polar sets for Brownian sheet. Acta Math  Sci, 2003, 23B(4): 549--561 
[3] Chen Z. Algebraic sum of the image sets for a random string process. Osaka J  Math, 2008, 45(4): 847--868 
[4] Falconer K J.  Fractal Geometry. Chichester: John Wiley and Sons Ltd, 1990 
[5] Funaki T. Random motion of strings and related stochastic evolution equations. Nagoya Math J, 1983, 89: 129--193 
[6] Hawkes J. Measures of Hausdorff type and stable processes. Mathematika, 1978, 25: 202--212 
[7] Kahane J P. Points multiples des processus de lèvy symètriques restreints à un ensemble de valurs du temps. Orsay:  Sèm  Anal Harm, 1983, 38(2): 74--105 
[8] Kahane J P. Some Random Series of Functions. 2nd ed. London: Cambridge University Press, 1985 
[9] Kakutani S. Two-dimensional Brownian motion and harmonic functions. Tokyo: Proc  Bmperial Acad, 1944, 20: 706--714 
[10]  Khoshnevisan D. Some polar sets for the Brownian sheet//Sèm  de Prob XXXI. Lecture Notes in Mathematics,  1655. Springer, 1997: 190--197 
[11] Meuller C, Tribe R. Hitting properties of a random string. Electronic J Probab, 2002, 7(10): 1--29  
[12]  Port S C, Stone C J. Brownian Motion and Classical Potential Theory. New York: Academic Press, 1978 
[13]} Rogers C  A. Hausdorff Measures. London: Cambridge University Press, 1970 
[14] Saint Raymond X, Tricot C. Packing regularity of sets in n-space. Math  Proc  Camb  Phil  Soc, 1988, 103: 
133--145 
[15] Talagrand M,  Xiao  Y. Fractional Brownian motion and packing dimension. J Theort  Probab, 1996, 9: 579-593 
[16] Taylor S I, Tricot C. Packing measure and its evaluation for a Brownian  path. Trans  Amer  Math  Soc, 1985, 288: 679--699 
[17] Taylor S I, Watson  N A, A Hausdorff measure classification of polar sets for the heat equation. Math Proc Camb Phil  Soc, 1985,  97: 325--344 
[18]} Testard F. Quelques propriètès gèomètriques de certains processus gaussiens. C R Acad  Sc Paris Sèrie B, 1985, 300:  497--500 
[19] Testard F. Polarit\'e, Points multiples et gèomètrie de certain processus gaussiens. Toulouse:  Publ  du Laboratoire de Statistique et Probabilitès de l' U P S, 1986, 3: 1--86 
[20] Testard  F. Dimension asymètrique et ensembles doublement non polairs. C R Acad  Sc Paris, 1986, 303,  Sèrie B: 579--581 
[21] Tricot C. Two definitions of fractional dimension. Math Proc Camb  Phil  Soc, 1982, 91: 57--74 
[22]  Wu D,  Xiao Y. Fractal properties of the random string process. IMS Lecture Notes-Monograph Series--High Dimensional Probability, 2006, 51: 128--147 
[23]  Xiao Y. Hitting probabilities and polar sets for Fractional Brownian motion. Stochastics and Stochastics Reports, 1999, 66: 121-151 
[24]  Xiao Y. Sample path properties of anisotropic Gaussian random fields//Khoshnevisan D, Rassoul-Agha F, eds.  A Minicourse on 
Stochastic Partial Differential Equations, Lecture Notes in Mathematics 1962. 
 Springer, 2009: 145--212  |