|   [1] Bourgain J. On the compactness of the support of solutions of dispersive equations. Internat Math Res Notices, 1997, 9: 437–447 
 
[2] Carleman T. Sur les syst`emes Lineaires aux d´eriv´ees partielles du premier ordre `a deux variables. C R Acad Sci Paris, 1939, 97: 471–474 
 
[3] Carvajal X, Panthee M. Unique continuation property for a higher order nonlinear Schr¨odinger equation. J Math Anal Appl , 2005, 303: 188–207 
 
[4] Escauriaza L, Kenig C E, Ponce G, Vega L. On uniqueness properties of solutions of the k-generalized KdV equations. J Funct Anal, 2007, 244: 504–535 
 
[5] Escauriaza L, Kenig C E, Ponce G, Vega L. On unique continuation of solutions of Schr¨odinger equations. Comm Partial Differential Equations, 2006, 31: 1811–1823 
 
[6] Escher J, Lechtenfeld O, Yin Zhaoyang. Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation. Discrete Continuous Dynamical Systems, 2007, 17: 493–513 
 
[7] Escher J, Liu Yue, Yin Zhaoyang. Global weak solutions and blow-up structure for the Degasperis-Procesi equation. J Funct Anal, 2006, 241: 457–485 
 
[8] Guo Zhengguang, Zhou Yong. On solutions to a two-component generalized Camassa-Holm equation. Stud Appl Math, 2010, DOI: 10.1111/j.1467-9590.2009.00472.x 
 
[9] Himonas A, Misiolek G, Ponce G, Zhou Yong. Persistence properties and unique continuation of solutions of the Camassa-Holm equations. Comm Maths Phys, 2007, 271: 511–522 
 
[10] Isakov V. Carleman type estimates in an anisotropic case and applications. J Differential Equations, 1993, 105: 217–238 
 
[11] Kato T. Quasi-linear equations of evolution, with applications to partial differential equations//Spectral Theory and Differential Equations. Lecture Notes in Math, Vol 448. Berlin: Springer Verlag, 1975: 25–70 
 
[12] Kenig C E, Ponce G, Vega L. On the support of solutions to the generalized KdV equation. Ann Inst H Poincar´e Anal Non Lin´eaire , 2002, 19: 191–208 
 
[13] Kenig C E, Ponce G, Vega L. On unique continuation for nonlinear Schr¨odinger equation. Comm Pure Appl Math, 2003, 56: 1247–1262 
 
[14] Panthee M. A note on the unique continuation property for Zakharov-Kuznetsov equation. Nonlinear Analysis: Theory, Methods and Applications, 2004, 59: 425-438 
 
[15] Popowicz Z. A 2-component generalization of the Degasperis-Procesi equation. J Phys A: Math Gen, 2006, 39: 13717–13726 
 
[16] Saut J C, Scheurer B. Unique continuation for some evolution equations. J Differential Equations, 1987, 77: 118–139 
 
[17] Tataru D. Carleman type estimates and unique continuation for the Schr¨odinger equation. Differential Integral Equations, 1995, 8: 901–905 
 
[18] Zhang Bingyu. Unique continuation for the Kortemeg-de Vries equation. SIAM J Math Anal, 1992, 23: 55–71 
 
[19] Zhou Yong. Blow-up phenomenon for the integrable Degasperis-Procesi equation. Phys Lett A, 2004, 328: 157-162  |