|   [1] Berkowitz B, Scher H, Silliman S E. Anomalous transport in laboratory-scale heterogeneous porusmedia. Water Resour Res, 2002, 36: 149–158 
 
[2] Scher H, Montroll E W. Anomalous transit-time dispersion in amorphous solids. Phys Rev B, 1975, 12: 455–477 
 
[3] Adams E E, Gelhar L W. Field study of dispersion in heterogeneous aquifer. Water Resour Res, 1992, 28: 3293–3307 
 
[4] Chechkin A V, Gonchar V Y, Szydlowski M. Fractional kinetics for relaxation and superdiffusion in a magnetic field. Phys Plasma, 2002, 9: 78–88 
 
[5] Mainardi F. Fractional diffusive waves in viscoelastic solids//Wegner J L, Norwood F R. Nonlinear Waves in Solids. Fairfield: ASME/AMR, 1995: 93–97 
 
[6] Mandelbrojt S. The Fractal Geometry of Nature. New York: Freeman, 1982 
 
[7] Metzler R, Klafter J. The random walk´s guide to anomalous diffusion: A fractional dynamics approach. Phys Rep, 2000, 339: 1–77 
 
[8] Shen G J, Chen C, Yan L T. Remarks on sub-fractional Bessel processes. Acta Mathematica Scientia, 2011, 31: 1860–1876 
 
[9] Nigmatullin R R. The realization of the generalized transfer equation in a medium with fractal geometry. Phy Stat Sol B, 1986, 133: 425–430 
 
[10] Klibas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier, 2006 
 
[11] Podlubny I. Fractional Differential Equations. San Diego: Academic, 1999 
 
[12] Guo B L, Pu X K, Huang F H. Fractional Partial Differential Equations and their Numerical Solutions (in Chinese). Beijing: Science Press, 2011 
 
[13] Sakamoto K, Yamamoto M. Initial value/boundary value problems for fractional diffusion-wave equa-tions and applications to some inverse problems. http://www.sciencedirect.com/science/article/pii/S0022247X11003970 
 
[14] Cheng J, et al. Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation. Inverse Probl, 2009, 25. http://iopscience.iop.org/0266-5611/25/11/115002/ 
 
[15] Liu J J, Yamamoto M. A backward problem for the time-fractional diffusion equation. Appl Anal, 2010, 89: 1769–1788 
 
[16] Murio D A,Mej´?a C E. Source terms identification for time fractional diffusion equation. Revista Colombiana de Matem´as, 2008, 42: 25–46 
 
[17] Nakagawa J, Sakamoto K, Yamamoto M. Overview to mathematical analysis for fractional diffusion equations-new mathematical aspects motivated by industrial collaboration. J Math Ind, 2010, 2: 99–108 
 
[18] Tuan V K. Inverse problem for fractional diffusion equation [J]. Frac Calc Appl Anal, 2011, 14: 31–55 
 
[19] Zhang Y, Xu X. Inverse source problem for a fractional diffusion equation. Inverse Probl, 2011, 27.  
http://iopscience.iop.org/0266-5611/27/3/035010 
 
[20] Zelttl A. Mathematical surveys and monographs. Vol 121. Sturm-Liouville Theory. Americal Mathematical Society, 2005 
 
[21] Umarov S R, Saidamatov E M. A generalization of Duhamels principle for differential equations of fractional order. Dokl Math, 2007, 75: 94–96  |