|   [1] Bandt C, Baraki G. Metrically invariant measures on locally homogeneous spaces and hyperspaces. Pacific J Math, 1986, 121: 13–28 
 
[2] B´ar´any I. Affine perimeter and limit shape. J Reine Angew Math, 1997, 484: 71–84 
 
[3] Federer H. Geometric Measure Theory. Berlin: Springer-Verlag, 1969 
 
[4] Feller W. An Introduction to Probability Theory and Its Applications. 3rd ed. New York: Wiley, 1968 
 
[5] Gruber P M,Wills J M (Hrsg). Handbook of Convex Geometry, Volume A, B. Amsterdam: North Holland, 1993 
 
[6] Gruber P M. Convex and Discrete Geometry. Berlin, Heidelberg: Springer-Verlag 2007 
 
[7] Halmos P R. Measure Theory. New York, Heidelberg, Berlin: Springer-Verlag, 1974 
 
[8] Hazewinkel M, ed. Normal distribution//Encyclopedia of Mathematics. Springer, 2001 
 
[9] Hoffmann L M. Measures on the space of convex bodies. Adv Geom, 2010, 10: 477–486 
 
[10] Horv´ath ´A G. Generalized Minkowski space with changing shape. http://arxiv.org/abs/1212.0278, 2012 
 
[11] Klain D, Rota G-C. Introduction to Geometric Probability. Cambridge Univ Press, 1997 
 
[12] Lee H, Lin D. Haar measure on compact groups. http://www.math.cuhk.edu.hk/course/math5012/Haar 
 
[13] Molchanov I. Theory of Random Sets. Springer, 2005 
 
[14] Santal´o L A. Integral Geometry and Geometric Probability. Reading, MA: Addison-Wesley 1976 
 
[15] Schneider R. Convex Bodies: the Brunn-Minkowski Theory. Volume 44 of Encyclopedia of Mathematics and its Applications. Cambridge Univ Press, 1993  |