|   [1] Neuman E, S´andor J. On the Schwab-Borchardt mean. Math Pannon, 2003, 14(2): 253–266 
 
[2] Seiffert H J. Problem 887. Nieuw Arch Wisk, 1993, 11(2): 176–176 
 
[3] H¨ast¨o P A. A monotonicity property of ratios of symmetric homogeneous means. JIPAM J Inequal Pure Appl Math, 2002, 3(5): Article 71, 23 pages 
 
[4] Neuman E, S´andor J. On certain means of two arguments and their extension. Int J Math Math Sci, 2003, 16: 981–993 
 
[5] H¨ast¨o P A. Optimal inequalities between Seiffert’s mean and power mean. Math Inequal Appl, 2004, 7(1): 47–53 
 
[6] Chu Y M, Wang M K, Wang G D. The optimal generalized logarithmic mean bound for Seiffert´s mean. Acta Mathematica Scientia, 2012, 32B(4): 1619–1626 
 
[7] Gao H Y, Guo J L, Li M H. Sharp bounds for the first Seiffert and logarithmic means in terms of generalized Heronian mean. Acta Mathematica Scientia, 2013, 33B(3): 568–572 (in Chinese) 
 
[8] Neuman E. Inequalities for the Schwab-Borchardt mean and their applications. J Math Inequal, 2011, 5(4): 601–609 
 
[9] Chu Y M, Hou S W, Shen Z H. Sharp bounds for Seiffert mean in terms of root mean square. J Inequal Appl, 2012, 2012: 11, 6 pages 
 
[10] Chu Y M, Wang M K, Qiu S L. Optimal combinations bounds of root-square and arithmetic means for Toader mean. Proc Indian Acad Sci Math Sci, 2012, 122(1): 41–51 
 
[11] Chu Y M, Wang M K, Wang Z K. Best possible inequalities among harmonic, geometric, logarithmic and Seiffert means. Math Inequal Appl, 2012, 15(2): 415–422 
 
[12] Jiang W D, Qi F. Some sharp inequalities involving Seiffert and other means and their concise proofs. Math Inequal Appl, 2012, 15(4): 1007–1017 
 
[13] Gong W M, Song Y Q, Wang M K, Chu Y M. A sharp double inequality between Seiffert, arithmetic, and geometric means. Abstr Appl Anal, 2012, Article ID 684834, 7 pages 
 
[14] Jiang W D. Some sharp inequalities involving reciprocals of the Seiffert and other means. J Math Inequal, 2012, 6(4): 593–599 
 
[15] Chu Y M, Long B Y, Gong W M, Song Y Q. Sharp bounds for Seiffert and Neuman-S´andor means in terms of generalized logarithmic means. J Inequal Appl, 2013, 2013: 10, 13 pages 
 
[16] Neuman E, S´andor J. On the Schwab-Borchardt mean II. Math Pannon, 2006, 17(1): 49–59 
 
[17] Li YM, Long B Y, Chu YM. Sharp bounds for the Neuman-S´andor mean in terms of generalized logarithmic mean. J Math Inequal, 2012, 6(4): 567–577 
 
[18] Neuman E. A note on a certain bivariate mean. J Math Inequal, 2012, 6(4): 637–643 
 
[19] Zhao T H, Chu YM, Liu B Y. Optimal bounds for Neuman-S´andor mean in terms of the convex combination of harmonic, geometric, quadratic, and contraharmonic means. Abstr Appl Anal, 2012, Article ID 302635, 9 pages 
 
[20] Chu Y M, Long B Y. Bounds of the Neuman-S´andor mean using power and identric means. Abstr Appl Anal, 2013, Article ID 832591, 6 pages 
 
[21] Abramowitz M, Stegun I A. Handbook of Mathematical Functions, New York: Dover Publications, 1970  |