|   [1] Roper K, Suffridge T. Convex mappings on the unit ball of Cn. J d´Analyse Math, 1995, 65: 333–347 
 
[2] Graham I, Kohr G. Univalent mappings associated with the Roper-Suffridge extension operator. J d´Analyse Math, 2000, 81: 331–342 
 
[3] Graham I, Kohr G. Loewner chains and the Roper-Suffridge extension operator. J Math Anal Appl, 2000, 247: 448–465 
 
[4] Gong S, Liu T S. On the Roper-Suffridge extension operator. J d´Analyse Math, 2002, 88: 397–404 
[5] Liu T S, Gong S. The family of " starlike mappings (I). Chin Ann Math, 2002, 23A(3): 273–282 
 
[6] Gong S, Liu T S. The generalized Roper-Suffridge extension operator. J Math Anal Appl, 2003, 284(2): 425–434 
 
[7] Liu X S, Liu T S. The generalized Roper-Suffridge extension operator on a Reinhardt domain and the unit ball in a complex Hilbert space. Chin Ann Math, 2005, 26A(5): 721–730 
 
[8] Feng S X, Liu T S. The generalized Roper-Suffridge extension operator. Acta Math Sci, 2008, 28B(1): 63–80 
 
[9] Muir J. A modification of the Roper-Suffridge extension operator. Comput Methods and Funct Theory, 2005, 5(1): 237–251 
 
[10] Muir J, Suffridge T. A generalization of half-plane mappings to the ball in Cn. Trans Amer Math Society, 2007, 359(4): 1485–1498 
 
[11] Muir J, Suffridge T. Extreme points for convex mappings of Bn. J d´Analyse Math, 2006, 98: 169–182 
 
[12] Wang J F, Liu T S. A modified Roper-Suffridge extension operator for some holomorphic mappings. Chin Ann Math, 2010, 31A(4): 487–496 
 
[13] Feng S X, Yu L. Modified Roper-Suffridge operator for some holomorphic mappings. Front Math China, 2011, 6(3): 411–426 
 
[14] Wang J F, Gao C L. A new Roper-Suffridge extension operator on a Reinhardt domain. Abst Appl Anal, 2011, 2011: Artile ID 865496 
 
[15] Feng S X, Lu K P. The growth theorem for almost starlike mappings of order on bounded starlike circular domains. Chin Quart J Math, 2000, 15(2): 50–56 
 
[16] Liu H. Class of Starlike Mappings, its Extensions and Subclasses in Several Complex Variables[D]. Hefei: 
University of Science and Technology of China, 1999 (In Chinese) 
 
[17] Liu H, Li X S. The growth theorem for strongly starlike mappings of order on bounded starlike circular domains. Chin Quart J Math, 2000, 15(3): 28–33 
 
[18] Stankiewicz J. Queleques problemes extremaux dans les classes -angulairment etoiles. Ann Universitaties, Mariae Curie-Sklodowska, 1966, 20: 59–75 
 
[19] Liu T S, Ren G B. The growth theorem for starlike mappings on bounded starlike circular domains. Chin Ann Math, 1998, 19B(4): 401–408 
 
[20] Graham I, Kohr G. Geometric function theory in one and higher dimensions. New York: Marcel Dekker, 2003 
 
[21] Muir J. A class of Loewner chain preserving extension operators. J Math Anal Appl, 2008, 337(2): 862–879 
 
[22] ZhangWJ, Liu T S. On decomposition theorem of normalized biholomorphic convex mappings in Reinhardt 
domains. Sci in China, 2003, 46A(1): 94–106 
 
[23] Duren P. Univalent Functions. New York: Springer-Verlag, 1983  |