|   [1] Koliha J J. A generalized Drazin inverse. Glasgow Math J, 1996, 38: 367-381 
[2] Hartwig R E, Wang G, Wei Y. Some additive results on Drazin inverse. Linear Algebra Appl, 2001, 322: 207-217 
[3] Djordjevi? D S, Wei Y. Additive results for the generalized Drazin inverse. J Austral Math Soc, 2002, 73: 115-125 
[4] Castro-González N, Koliha J J. New additive results for the g-Drazin inverse. Proc Roy Soc Edinburgh Sect A, 2004, 134: 1085-1097 
[5] Catral M, Olesky D D, Van Den Driessche P. Block representations of the Drazin inverse of a bipartite matrix. Electron J Linear Algebra, 2009, 18: 98-107 
[6] Deng C, Wei Y. A note on the Drazin inverse of an anti-triangular matrix. Linear Algebra Appl, 2009, 431: 1910-1922 
[7] Campbell S L, Meyer C D. Generalized Inverses of Linear Transformations. London: Pitman, 1979 
[8] Bu C, Sun L, Zhou J, Wei Y. Some results on the Drazin inverse of anti-triangular matrices. Linear Multilinear Algebra, 2013, 61: 1568-1576 
[9] Castro-González N, Dopazo E. Representations of the Drazin inverse for a class of block matrices. Linear Algebra Appl, 2005, 400: 253-269 
[10] Castro-González N, Martínez-Serrano M F. Drazin inverse of partitioned matrices in terms of Banachiewicz- Schur forms. Linear Algebra Appl, 2010, 432: 1691-1702 
[11] Deng C, Wei Y. Representations for the Drazin inverse of 2 × 2 block-operator matrix with singular Schur complement. Linear Algebra Appl, 2011, 435: 2766-2783 
[12] Huang J, Shi Y, Chen A. The representation of the Drazin inverse of anti-triangular operator matrices based on resolvent expansions. Appl Math Comput, 2014, 242: 196-201 
[13] Li X, Wei Y. A note on the representations for the Drazin inverse of 2 × 2 block matrix. Linear Algebra Appl, 2007, 423: 332-338 
[14] Xu Q, Wei Y, Song C. Explicit characterization of the Drazin index. Linear Algebra Appl, 2012, 436: 2273-2298  |