|   [1] Atkinson F V, Peletier L A. Similariry solutions of the nonlinear diffusion equation. Arch Ration Mech Anal, 1974, 54:373-392 
[2] Bianchini S, Bressan A. Vanishing viscosity solutons of nonlinear hyperbolic systems. Ann Math, 2005, 161:223-342 
[3] Bressan S, Yang T. On the convergence rate of vanishing viscosity approximations. Comm Pure Appl Math, 2004, 57:1075-1109 
[4] Chen G Q, Perepelista M. Vanishing viscosity limit of the Navier-Stokes equations to the Euler equations for compressible fluid flow. Commun Pure Appl Math, 2010, 63:1469-1504 
[5] Courant R, Friedrichs K O. Supersonic Flow and Shock Waves. 5th ed. Springer-Verlag, 1999 
[6] DiPerna R J. Convergence of approximate solutions to conservation laws. Arch Rat Mech Anal, 1983, 83:27-70 
[7] DiPerna R J. Convergence of the viscosity method for isentropic gas dynamics. Comm Math Phys, 1983, 91:1-30 
[8] Duan R, Liu H X. Zhao H J. Nonlinear stability of rarefaction waves for the compressible Navier-Stokes equations with large initial perturbation. Trans American Math Soc, 2009, 361(1):453-493 
[9] Duyn C T, Peletier L A. A class of similariry solution of the nonlinear diffusion equation. Nonlinear Anal, 1977, 1:223-233 
[10] Goodman J. Nonlinear asymptotic stability of viscous shock profiles for conservation laws. Arch Ration Mech Anal, 1986, 95(4):325-344 
[11] Goodman J, Xin Z P. Viscous limits for piecewise smooth solutions to systems of conservation laws. Arch Ration Mech Anal, 1992, 121(3):235-265 
[12] Gu`es O, Métivier G, Williams M, Zumbrun K. Existence and stability of multidimensional shock fronts in the vanishing viscosity limit. Arch Ration Mech Anal, 2005, 175(2):151-144 
[13] Hoff D, Liu T P. The inviscid limit for the Navier-Stokes equations of compressible isentropic flow with shock data. Indiana Univ Math J, 1989, 36(4):861-915 
[14] Hoff D, Liu T P. Nonlinear diffusive phenomena of nonlinear hyperbolic systems. Chin Ann Math, 1993, 14B(4):235-265 
[15] Huang F M, Jiang S, Wang Y. Zero dissipation limit of full compressible Navier-Stokes equations with a Riemann initial data. Commun Inform Sys, 2013, 13(2):211-246 
[16] Huang F M, Li M J, Wang Y. Zero dissipation limit to rarefaction wave with vacuum for 1-D compressible Navier-Stokes equations. SIAM J Math Anal, 2012, 44(3):1742-1759 
[17] Huang F M, Li X. Zero dissipation limit to rarefaction waves for the 1-D compressible Navier-Stokes equations. Chin Ann Math Ser B, 2012, 33(3):385-394 
[18] Huang F M, Matsumura A, Xin Z P. Stability of contact discontinuities for the 1-D compressible Navier-Stokes equations. Arch Ration Mech Anal, 2005, 179:55-77 
[19] Huang F M, Wang Y, Wang Y, Yang T. The limit of the Boltzmann equation to the Euler equations for Riemann problems. SIAM J Math Anal, 2013, 45:1741-1811 
[20] Huang F M, Wang Y, Wang Y, Yang T. Vanishing viscosity of isentropic Navier-Stokes equations for interacting shocks. Sci China Math, 2015, 58(4):653-672 
[21] Huang F M, Wang Y, Yang T. Hydrodynamic limit of the Boltzmann equation with contact discontinuities. Comm Math Phys, 2010, 295(2):293-326 
[22] Huang F M, Wang Y, Yang T. Fluid dynamic limit to the Riemann solutions of Euler equations:I. superposition of rarefaction waves and contact discontinuity. Kinet Related Models, 2010, 3:685-728 
[23] Huang FM,Wang Y, Yang T. Vanishing viscosity limit of compressible Navier-Stokes equations for solutions to a Riemann problem. Arch Ration Mech Anal, 2012, 203:379-413 
[24] Huang F M, Wang Y, Zhai X Y. Stability of viscous contact wave for compressible Navier-Stokes system of general gas with free boundary. Acta Math Sci, 2010, 30B(6):1906-1916 
[25] Huang F M, Xin Z P, Yang T. Contact discontinuity with general perturbations for gas motions. Adv Math, 2008, 219(4):1246-1297 
[26] Jiang S, Ni G X, Sun W J. Vanishing viscosity linit to rarefaction waves for the Navier-Stokes equations of dne-dimensional compressible heat-conducting fluids. SIAM J Math Anal, 2006, 38(2):368-384 
[27] Li M J, Wang T, Wang Y. The limit to rarefaction wave with vacuum for 1D compressible fluids with temperature-dependent viscosities. Anal Appl, 2015, 13(5):555-589 
[28] Lions P L, Perthame B, Souganidis P E. Existence and stability of entrophy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates. Comm Pure Appl Math, 1996, 49:599-638 
[29] Lions P L, Perthame B, Tadmor E. Kinetic formulation of sentropic gas dynamics and p-system. Comm Math Phys, 1994, 163:415-431 
[30] Liu T P. Nonlinear stability of shock waves for viscous conservation laws. Mem Amer Math Soc, 1985, 56(329):1-108 
[31] Ma S X. Zero dissipation limit to strong contact discontinuity for the 1-D compressible Navier-Stokes equations. J Diff Equs, 2010, 248:95-110 
[32] Matsumura A, Nishihara K. On the stability of travelling wave solutions of a one-dimensional model system for compressible viscous gas. Jpn J Appl Math, 1985, 2:17-25 
[33] Matsumura A, Nishihara K. Asymptotics toward the rarefaction wave of the solutions of a one-dimensional model system for compressible viscous gas. Jpn J Appl Math, 1986, 3:1-13 
[34] Serre D, Zumbrun K. Boundary layer stability in real vanishing viscosity limit. Comm Math Phys, 2001, 221:267-292 
[35] Szepessy A, Xin Z P. Nonlinear stability of viscous shock waves. Arch Ration Mech Anal, 1993, 122:53-103 
[36] Wang H Y. Viscous limits for piecewise smooth solutions for the p-system. J Math Anal Appl, 2004, 299:411-432 
[37] Wang T. Vanishing viscosity limit to rarefaction wave with vacuum for 1-D compressible Navier-Stokes equations with density-dependent viscosity. Commun Math Sci, 2015, 13(2):477-495 
[38] Wang Y. Zero dissipation limit of the compressible heat-conducting Navier-Stokes equations in the presence of the shock. Acta Math Sci, 2008, 28B(4):727-748 
[39] Xin Z P. Zero dissipation limit to rarefaction waves for the dne-dimensinal Navier-Stokes equations of compressible isentropic gases. Comm Pure Appl Math, 1993, 46:621-665 
[40] Xin Z P. Viscous boundary layers and their stability. 1. J Partial Diff Equs, 1998, 11:97-124 
[41] Xin Z P, Yanagisawa T. Zero-viscosity limit of the linearized Navier-Stokes equations for a compressible viscous fluid in the half-plane. Comm Pure Appl Math, 1999, 52:497-541 
[42] Xin Z P, Zeng H. Convergence to rarefaction waves for nonlinear Boltzmann equation and compressible Navier-Stokes equations. J Differ Equ, 2010, 249:827-871 
[43] Yu S H. Zero dissipation limit of solutions with shocks for systems of hyperboloc conservation laws. Arch Ration Mech Anal, 1999, 146(4):275-370 
[44] Zhang Y H, Pan R H, Wang Y, Tan Z. Zero dissipation limit with two interacting shocks of the 1D non-isentropic Navier-Stokes equations. Indiana Univ Math J, 2013, 62(1):249-309  |