|   [1] Adams R A, Fournier J J F. Sobolev Spaces. Pure and Appl Math 140. 2nd ed. Amsterdam:Elsevier/Academic Press, 2003 
[2] Amann H. Ordinary Differential Equations:An Introduction to Nonlinear Analysis. Berlin, New York:De Gruyter, 1990 
[3] Boccardo L, Murat F, Puel J P. Existence of bounded solutions for nonlinear elliptic unilateral problems. Ann Mat Pura Appl, 1988, 152(4):183-196 
[4] Chen Y, Levine S, Rao M. Variable exponent, linear growth functionals in image restoration. SIAM J Appl Math, 2006, 66:1383-1406 
[5] Diening L, Harjulehto P, Hästö P, R·u?i?cka M. Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, Vol 2017. Berlin:Springer, 2011 
[6] Edmunds D E, Rákosn?k J. Sobolev embeddings with variable exponent. Stud Math, 2000, 143(3):267-293 
[7] Elmahi A, Meskine D. Strongly nonlinear parabolic equations with natural growth terms in Orlicz spaces. Nonlinear Anal, 2005, 60:1-35 
[8] Fu Y. The existence of solutions for elliptic systems with nonuniform growth. Studia Math, 2002, 151:227-246 
[9] Fu Y, Pan N. Existence of solutions for nonlinear parabolic problem with p(x)-growth. J Math Anal Appl, 2010, 362:313-326 
[10] Fan X, Zhao D. On the spaces Lp(x)(Ω) and Wm,p(x)(Ω). J Math Anal Appl, 2001, 263(2):424-446 
[11] Harjulehto P, Hästö P, Koskenoja M, Varonen S. The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values. Potential Anal, 2006, 25:205-222 
[12] Kovácik O, Rákosn?k J. On spaces Lp(x) and Wm,p(x). Czechoslovak Math J, 1991, 41:592-618 
[13] Landes R. On the existence of weak solutions for quasilinear parabolic initial-boundary value problems. Proc Roy Soc Edinburgh Sect A, 1981, 89(3/4):217-237 
[14] Levine S, Chen Y, Stanich J. Image restoration via nonstandard diffusion. Technical Report:04-01, Dept of Mathematics and Computer Science, Duquesne University, 2004 
[15] Musielak J. Orlicz Spaces and Modular Spaces. Lecture Notes in Math 1034. Berlin:Springer-Verlag, 1983 
[16] Rajagopal K R, R·u?i?cka M. Mathematical modeling of electrorheological materials. Contin Mech Thermodyn, 2001, 13:59-78 
[17] R·u?i?cka M. Electrorheological Fluids:Modeling and Mathematical Theory. Lecture Notes in Mathematics. Berlin:Springer, 2000 
[18] Samko S G. Denseness of C0∞(RN) in the generalized Sobolev spaces m,p(x)(RN)//Direct and Inverse Problems of Mathematics Physics (Newark, DE, 1997), Int Soc Anal Appl Comput 5, Dordrecht:Kluwer Acad Publ, 2000:333-342 
[19] Samko S G. Density of C0∞(RN) in the generalized Sobolev spaces m,p(x)(RN). Dokl Akad Nauk, 1999, 369(4):451-454 
[20] Simon J. Compact set in the space Lp(0, T, B). Ann Mat Pura Appl, 1987, 146:65-96 
[21] Zhang C, Zhou S. Renormalized and entropy solutions for nonlinear parabolic equations with variable exponents and L1-data. J Differ Equ, 2010, 248:1376-1400 
[22] Zhikov V V. Density of smooth functions in Sobolev-Orlicz spaces. Zap Nauchn Sem S-Petersburg. Otdel Mat Inst Steklov (POMI), 2004, 310:67-81 
[23] Zhikov V V. Averaging of functionals of the calculus of variations and elasticity theory.[in Russian], Izv Akad Nauk SSSR, Ser Mat, 1986, 50(4):675-710; English transl:Math USSR, Izv, 1987, 29(1):33-66 
[24] Zhikov V V. On Lavrentiev's phenomen. Russian J Math Phy, 1995, 3(2):249-269  |