|   [1] Abate M, Patrizio G. Finsler Metrics-A Global Approach with Applications to Geometric Function Theory. Lecture Notes in Mathematics, Volume 1591. Berlin Aeidelberg:Springer-Verlag, 1994 
[2] Aikou T. On complex Finsler manifolds. Rep Fac Sci Kagoshima Univ (Math Phys & Chem), 1991, 24:9-25 
[3] Aikou T. Complex manifolds modeled on a complex Minkowski space. J Math Kyoto Univ (JMKYAZ), 1998, 35-1:85-103 
[4] Aikou T. Some remarks on locally conformal complex Berwald spaces. Contem Math, 1996, 196:109-120 
[5] Aldea N, Munteanu G. On complex Landsberg and Berwald spaces. J Geom Phys, 2012, 62(2):368-380 
[6] Asanov G S. Finslerian extensions of Schwarzschild metric. Fortschr Phys, 1992, 40:667-693 
[7] Asanov G S. Finslerian metric functions over the product R×M and their potential applications. Rep Math Phys, 1998, 41:117-132 
[8] Baagherzadeh Hushmandi A, Rezaii M M. On warped product Finsler spaces of Landsberg type. J Math Phys, 2011, 52, No. 9093506.17 
[9] Baagherzadeh Hushmandi A, Rezaii M M, Morteza M. On the curvature of warped product Finsler spaces and the Laplacian of the Sasaki-Finsler metrics. J Geom Phys, 2012, 62(10):2077-2098 
[10] Bao D, Chern S S, Shen Z. An Introduction to Riemann-Finsler Geometry. GTM 200. Springer-Verlag, 2000 
[11] Beem J K, Ehrlich P, Powell T G. Warped product manifolds in relativity in selected studies:a volume dedicated to the memory of Albert Einstein (T. M. Rassias and G. M. Rassias eds.). Armsterdarm:NorthHolland, 1982:41-56 
[12] Bishop R L, O'Neill B. Manifolds of negative curvature. Trans Amer Math Soc, 1969, 145:1-49 
[13] Chen B, Shen Y B. Kähler Finsler metrics are actually strongly Kähler. Chin Ann Math Ser B, 2009, 30(2):173-178 
[14] Chern S S, Shen Z. Riemann-Finsler geometry. World Scientific, 2005 
[15] Hamel G. Über die Geometrieen in denen die Geraden die Kürzesten sind. Math Ann, 1903, 57:231-264 
[16] Katanaev O M, Klösch T, Kummer W. Global properties of warped solutions in general relativity. Ann Physics, 1999, 276:191-222 
[17] Kobayashi S. Negative vector bundles and complex Finsler structures. Nagoya Math J, 1975, 57:153-166 
[18] Kozma L, Peter I R, Varga C. Warped product of Finsler-manifolds. Ann Univ Sci Budapest, 2001, 44:157 
[19] Matsumoto M. Foundations of Finsler Geometry and Special Finsler Spaces. Kaiseisha Press, 1986 
[20] Matsumoto M. Remarks on Berwald and Landsberg spaces, in Finsler Geometry. Contem Math, 1996, 196:79-82 
[21] Munteanu G. Complex Spaces in Finsler, Lagrange and Hamilton Geometries. Kluwer Academic Publishers, 2004 
[22] O'Neill B. Semi-Riemannian Geometry. New York:Academic Publisher, 1983 
[23] Peyghan E, Tayebi A. On doubly warped product Finsler manifolds. Nonlinear Anal Real World Appl, 2012, 13(4):1703-1720 
[24] Rund H. The curvature theory of direction-dependent connections on complex manifolds. Tensor N S, 1972, 24:189-205 
[25] Shen Z. On a class of Landsberg metrics in Finsler geometry. Can J Math, 2009, 61(6):1357-1374 
[26] Shen Z. Riemann-Finsler geometry with applications to information geometry. Chin Ann Math Ser B, 2006, 27(1):73-94 
[27] Sun L, Zhong C. Characterizations of complex Finsler connections and weakly complex Berwald metrics. Differential Geom Appl, 2013, 31:648-671 
[28] Szabso Z I. All regular Landsberg metrics are Berwald. Ann Global Anal Geom, 2008, 34(4):381-386 
[29] Szabso Z I. Correction to all regular Landsberg metrics are Berwald. Ann Global Anal Geom, 2009, 35(3):227-230 
[30] Unal B. Doubly Warped Products. Differ Geom Appl, 2001, 15(3):253-263 
[31] Wong B. On the holomorphic curvature of some intrinsic metrics. Proc Amer Math Soc, 1977, 65:57-61 
[32] Wu H. A remark on holomorphic sectional curvature. Indiana Univ Math J, 1973, 22:1103-1108 
[33] Wu Z, Zhong C. Some results on product complex Finsler manifolds. Acta Math Sci, 2011, 31B(4):1541-1552 
[34] Zhong C. On real and complex Berwald connections associated to strongly convex weakly Kähler-Finsler metric. Differential Geom Appl, 2011, 29:388-408 
[35] Zhong C. On unitary invariant strongly pseudoconvex complex Finsler metrics. Differential Geom Appl, 2015, 40:159-186  |