|   [1]  Anile A M. An extended thermodynamic framework for the hydrodynamical modeling of semiconductors. Pitman Research Notes In 
Mathematics Series, 1995, 340: 3--41 
 
[2]  Cerignani C. The Boltzmann equation and its applications//Applied Mathematical Sciences. New York: Springer-Valag, 1988 
 
[3]  Cercignani C, Illner R, Pulvirenti M. The mathematical theory of dilute gases//Applied Mathematical Sciences. New York: Springer-Verlag, 1994 
 
[4]  Choe H J, Kim H. Strong solutions of the Navier-Stokes equations for isentropic compressible fluids. J Differential Equations, 2003, 190: 504--523 
[5] Gerasimenko V I, Petrina Y D. The Boltzmann-Grad limit theorem (Russian). Dokl Akad Nauk Ukrain SSR Ser A, 1989, 11: 12--16 
 
[6]  Kobayashi P T, Suzuki T. Weak solutions to the Navier-Stokes-Poisson equations. Preprint, 2004 
 
[7]  Lions P L. Mathematical Topics in Fluid Dynamics, Vol.2, Compressible Models. Oxford:  Oxford Science Publication, 1998 
 
[8]  Marcati P, Natalini R. Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation. Arch 
Rational Mech Anal, 1995, 129: 129--145 
 
[9]  Marcati P, Natalini R. Weak solutions to a hydrodynamic model for semiconductors: the Cauchy problem. Proc Soc Edinburgh Sect A, 
1995, 125(1): 115--131 
 
[10]  Markowich P A. The Steady-State Semiconductor Device Equations. New York: Springer-Verlag, 1986 
[11]  Markowich P A, Ringhofer C, Schmeiser C. Semiconductor Equations. New York: Springer-Verlag, 1990 
 
[12]  Matsusu-Necasova S, Okada M, Makino T. Free boundary problem for the equation of spherically symmetric motion of viscous gas 
(II). Japan J Indust Appl Math, 1995, 12: 195--203 
 
[13]  Matsusu-Necasova S, Okada M, Makino T. Free boundary problem for the equation of spherically symmetric motion of viscous gas 
(III). Japan J Indust Appl Math, 1997, 14: 199--213 
 
[14]  Makino T, Okada M. Free boundary problem for the equation of spherically symmetric motion of viscous gas. Japan J Indust Appl Math, 1993, 10(2): 219--235 
 
[15]  Simon J. Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure. SIAM J Math Anal, 1990, 21(5): 1093--1117 
 
[16]  Ukai S. The Boltzmann-Grad limit and Cauchy-Kovalevskaya theorem, Recent topics in mathematics moving toward science and 
engineering. Japan J Indust Appl Math, 2001, 18(2): 383--392 
 
[17]  Valli A. Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method. Ann Sc Norm Super 
Pisa Cl Sci, 1983, 10(4): 607--647 
 
[18]  Zhang Y H, Tan Z. On the existence of solutions to the Navier-Stokes-Poisson equations of a two-dimensional compressible flow. Math Methods Appl Sci, 2007, 30(3): 305--329  |