|   [1] Ali R M, Ravichandran V, Seenivasagan N. Subordination and superordination on Schwarzian derivatives. J Ineq Appl, 2008, 2008: Article ID 12328 
 
[2] Ali R M, Ravichandran V, Seenivasagan N. Subordination and superordination of the Liu-Srivastava linear operator on meromorphic functions. Bull Malays Math Sci Soc, 2008, 31(2): 193–207 
 
[3] Ali R M, Ravichandran V, Seenivasagan N. Differential subordination and superordination of analytic functions defined by the multiplier transformation. Math Inequal Appl, 2009, 12(1): 123–139 
 
[4] Ali R M, Ravichandran V, Seenivasagan N. Differential subordination and superordination of analytic functions defined by the Dziok-Srivastava operator. J Franklin Inst, 2010, 347(9): 1762–1781 
 
[5] Ali R M, Ravichandran V, Seenivasagan N. On subordination and superordination of the multiplier trans-formation for meromorphic functions. Bull Malays Math Sci Soc, 2010, 33(2): 311–324 
 
[6] Andras S, Baricz A. Monotonicity property of generalized and normalized Bessel functions of complex order. Complex Var Elliptic Equ, 2009, 54(7): 689–696 
 
[7] Antonino J A, Miller S S. Third-order differential inequalities and subordinations in the complex plane. Complex Var Elliptic Equ, 2011, 56(5): 439–454 
 
[8] Baricz A. Applications of the admissible functions method for some differential equations. Pure Appl Math, 2002, 13(4): 433–440 
 
[9] Baricz A. Geometric properties of generalized Bessel functions. Publ Math Debrecen, 2008, 73: 155–178 
 
[10] Baricz A. Generalized Bessel Functions of the First Kind. Lecture Notes in Mathematics, Vol 1994. Berlin: Springer-Verlag, 2010 
 
[11] Baricz A, Ponnusamy S. Starlikeness and covexity of generalized Bessel function. Integral Transform Spec Funct, 2010, 21(9): 641–651 
 
[12] Cho N E, Kwon O S, Owa S, Srivastava H M. A class of integral operators preserving subordination and superordination for meromorphic functions. Appl Math Comput, 2007, 193: 463–474 
 
[13] Cho N E, Srivastava H M. A class of nonlinear integral operators preserving subordination and superordi-nation. Integral Transforms Spec Funct, 2007, 18: 95–107 
[14] Deniz E. Convexity of integral operators involving generalized Bessel functions. Integral Transforms Spec Funct, 2013, 24(3): 201–216 
 
[15] Deniz E, Orhan H, Srivastava H M. Some sufficient conditions for univalence of certain families of integral operators involving generalized Bessel functions. Taiwansese J Math, 2011, 15(2): 883–917 
 
[16] Dziok J, Srivastava H M. Classes of analytic functions associated with the generalized hypergeometric function. Appl Math Comput, 1999, 103(1): 1–13 
 
[17] Dziok J, Srivastava H M. Certain subclasses of analytic functions associated with the generalized hyperge-ometric function. Integral Transform Spec Funct, 2003, 14(1): 7–18 
 
[18] Miller S S, Mocanu P T. Univalence of Gaussian and confluent hypergeometric functions. Proc Amer Math Soc, 1990, 110(2): 333–342 
 
[19] Miller S S, Mocanu P T. Differential Subordinations. Monographs and Textbooks in Pure and Applied Mathematics, 225. New York: Marcel Dekker, 2000 
 
[20] Owa S, Srivastava H M. Univalent and starlike generalized hypergeometric functions. Canad J Math, 1987, 39(5): 1057–1077 
 
[21] Ponnusamy S, Juneja O P. Third-order differential inequalities in the complex plane. Current Topics in Analytic Function Theory. Singapore, London: World Scientific, 1992 
 
[22] Ponnusamy S, Ronning F. Geometric properties for convolutions of hypergeometric functions and functions with the derivative in a halfplane. Integral Transform Spec Funct, 1999, 8: 121–138 
 
[23] Ponnusamy S, Vuorinen M. Univalence and convexity properties for confluent hypergeometric functions. Complex Var Theory Appl, 1998, 36(1): 73–97 
 
[24] Ponnusamy S, Vuorinen M. Univalence and convexity properties for Gaussian hypergeometric functions. Rocky Mountain J Math, 2001, 31(1): 327–353 
 
[25] Prajapat J K. Certain geometric properties of normalized Bessel Functions. Appl Math Lett, 2011, 24: 2133–2139 
 
[26] Selinger V. Geometric properties of normalized Bessel functions. Pure Math Appl, 1995, 6: 273–277 
 
[27] Shanmugam T N, Sivasubramanian S, Srivastava H M. Differential sandwich theorems for certain subclasses of analytic functions involving multiplier transformations. Integral Transforms Spec Funct, 2006, 17: 889–899 
 
[28] Srivastava H M, Yang D G, Xu N E. Subordinations for multivalent analytic functions associated with the Dziok-Srivastava operator. Integral Transforms Spec Funct, 2009, 20: 581–606 
 
[29] Watson G N. A Treatise on the Theory of Bessel Functions. 2nd ed. Cambridge, London, New York: Cambridge University Press, 1944  |