[1] Abdellaoui B, Boucherif A, Touaoula T M. Fractional parabolic problems with a nonlocal initial condition. Moroccan J Pure Appl Anal, 2017, 3(1):116-132 [2] Abdellaoui B, Medina M, Peral I, Primo A. The effect of the Hardy potential in some Calderón-Zygmund properties for the fractional Laplacian. J Differential Equations, 2016, 260(11):8160-8206 [3] Abdellaoui B, Medina M, Peral I, Primo A. Optimal results for the fractional heat equation involving the Hardy potential. Nonlinear Anal, 2016, 140:166-207 [4] Adimurthi A, Giacomoni J, Santra S. Positive solutions to a fractional equation with singular nonlinearity. J Differential Equations, 2018, 265(4):1191-1226 [5] Alibaud N, Andreianov B, Bendahmane M. Renormalized solutions of the fractional Laplace equation. C R Math Acad Sci Paris, 2010, 348(13/14):759-762 [6] Applebaum D. Lévy Processes and Stochastic Calculus. Cambridge Studies in Advanced Mathematics, 116. 2nd ed. Cambridge:Cambridge Univ Press, 2009 [7] Barrios B, De Bonis I, Medina M, Peral I. Semilinear problems for the fractional laplacian with a singular nonlinearity. Open Math, 2015, 13:390-407 [8] Barrios B, Medina M, Peral I. Some remarks on the solvability of non-local elliptic problems with the Hardy potential. Commun Contemp Math, 2014, 16(4):1350046, 29 [9] Bénilan P, Boccardo L, Gallouet T, Gariepy R, Pierre M, Vasquez J L. An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Annali Scuola Norm Sup Pisa, 1995, 22(4):241-273 [10] Bisci G M, Radulescu V D, Servadei R. Variational methods for nonlocal fractional problems//Encyclopedia of Mathematics and its Applications, Vol 162. Cambridge:Cambridge University Press, 2016 [11] Boccardo L, Orsina L. Semilinear elliptic equations with singular nonlinearities. Calc Var Partial Differential Equations, 2010, 37(3/4):363-380 [12] Canino A, Montoro L, Sciunzi B, Squassina M. Nonlocal problems with singular nonlinearity. Bull Sci Math, 2017, 141(3):223-250 [13] Crandall M G, Rabinowitz P H, Tartar L. On a dirichlet problem with a singular nonlinearity. Comm Partial Differential Equations, 1977, 2(2):193-222 [14] Danielli D, Salsa S. Obstacle problems involving the fractional Laplacian//Recent Developments in Nonlocal Theory. Berlin:De Gruyter, 2018:81-164 [15] De Cave L M, Oliva F. Elliptic equations with general singular lower order term and measure data. Nonlinear Anal, 2015, 128:391-411 [16] Demengel F, Demengel G. Functional Spaces for the Theory of Elliptic Partial Differential Equations. Universitext. London:Springer; Les Ulis:EDP Sciences, 2012 [17] Di Nezza E, Palatucci G, Valdinoci E. Hitchhiker's guide to the fractional Sobolev spaces. Bull Sci Math, 2012, 136(5):521-573 [18] Dipierro, S, Figalli A, Valdinoci E. Strongly nonlocal dislocation dynamics in crystals. Comm Partial Differential Equations, 2014, 39(12):2351-2387 [19] Fiscella A, Servadei R Valdinoci E. Density properties for fractional Sobolev spaces. Ann Acad Sci Fenn Math, 2015, 40(1):235-253 [20] Kenneth K H, Petitta F, Ulusoy S. A duality approach to the fractional Laplacian with measure data. Publ Mat, 2011, 55(1):151-161 [21] Klimsiak T. Reduced measures for semilinear elliptic equations involving Dirichlet operators. Nonlinear Anal, 2016, 55(4):Art 78, 27 [22] Kufner A, John O, Fučík S. Function Spaces. Leyden, Academia, Prague:Noordhoff International Publishing, 1977 [23] Landkof N. Foundations of Modern Potential Theory. Die Grundlehren der Mathematischen Wissenschaften, Vol 180. New York, Heidelberg:Springer-Verlag, 1972 [24] Lazer A C, McKenna P J. On a singular nonlinear elliptic boundary-value problem. Proc Amer Math Soc, 1991, 111(3):721-730 [25] Leonori T, Peral I, Primo A, Soria F. Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations. Discrete Contin Dyn Syst, 2015, 35(12):6031-6068 [26] Oliva F, Petitta F. On singular elliptic equations with measure sources. ESAIM Control Optim Calc Var, 2016, 22(1):289-308 [27] Oliva F, Petitta F. Finite and infinite energy solutions of singular elliptic problems:existence and uniqueness. J Differential Equations, 2018, 264(1):311-340 [28] Petitta F. Some remarks on the duality method for integro-differential equations with measure data. Adv Nonlinear Stud, 2016, 16(1):115-124 [29] Ponce A C. Elliptic PDEs, Measures and Capacities. EMS Tracts in Mathematics, 23. Zürich:European Mathematical Society (EMS), 2016 [30] Sire Y, Valdinoci E. Fractional Laplacian phase transitions and boundary reactions:a geometric inequality and a symmetry result. J Funct Anal, 2009, 256(6):1842-1864 [31] Stuart C A. Existence and approximation of solutions of non-linear elliptic equations. Math Z, 1976, 147(1):53-63 [32] Sun Y J, Zhang D Z. The role of the power 3 for elliptic equations with negative exponents. Calc Var Partial Differential Equations, 2014, 49(3/4):909-922 |