[1] Atiyah M F. Elliptic Operators and Compact Groups. Lecture Notes in Mathematics, Vol 401. Berlin:Springer-Verlag, 1974 [2] Berline N, Getzler E, Vergne M. Heat Kernels and Dirac Operators. Grundl Math Wiss Band 298. Berlin:Springer-Verlag, 1992 [3] Bismut J -M, Lebeau G. Complex immersions and Quillen metrics. Inst Hautes Études Sci Publ Math, 1991, 74:1-298 [4] Guillemin V, Sternberg S. Geometric quantization and multiplicities of group representations. Invent Math, 1982, 67(3):515-538 [5] Hochs P, Mathai V. Geometric quantization and families of inner products. Adv Math, 2015, 282:362-426 [6] Hochs P, Song Y. Equivariant indices of Spin-Dirac operators for proper moment maps. Duke Math J, 2017, 166:1125-1178 [7] Hsiao C -Y, Ma X, Marinescu G. Geometric quantization on CR manifolds. arXiv:1906.05627 [8] Kostant B. Quantization and unitary representations//Lect Notes in Math, 170. Springer, 1970:87-207 [9] Ma X. Geometric quantization on Kähler and symplectic manifolds//Proceedings of the International Congress of Mathematicians, Volume II (New Delhi). Hindustan Book Agency, 2010:785-810 [10] Ma X, Marinescu G. Holomorphic Morse Inequalities and Bergman Kernels. Progress in Mathematics, Vol 254. Boston, MA:Birkhäuser Boston Inc, 2007, 422 pp [11] Ma X, Zhang W. Geometric quantization for proper moment maps. C R Math Acad Sci Paris, 2009, 347:389-394 [12] Ma X, Zhang W. Geometric quantization for proper moment maps:the Vergne conjecture. Acta Math, 2014, 212(1):11-57 [13] Mathai V, Zhang W. Geometric quantization for proper actions. Adv Math, 2010, 225:1224-1247 [14] Meinrenken E. On Riemann-Roch formulas for multiplicities. J Amer Math Soc, 1996, 9(2):373-389 [15] Meinrenken E. Symplectic surgery and the Spinc-Dirac operator. Adv Math, 1998, 134(2):240-277 [16] Meinrenken E, Sjamaar R. Singular reduction and quantization. Topology, 1999, 38:699-762 [17] Paradan P -É. Localization of the Riemann-Roch character. J Funct Anal, 2001, 187(2):442-509 [18] Paradan P -É. Spinc-quantization and the K-multiplicities of the discrete series. Ann Sci Ecole Norm Sup (4), 2003, 36(5):805-845 [19] Paradan P -É. Formal geometric quantization II. Pacific J Math, 2011, 253:169-211 [20] Paradan P -É, Vergne M. Equivariant Dirac operators and differentiable geometric invariant theory. Acta Math, 2017, 218:137-199 [21] Souriau J -M. Structure des Syst`emes Dynamiques. Maîtrises de Mathématiques. Paris:Dunod, 1970 [22] Tian Y, Zhang W. An analytic proof of the geometric quantization conjecture of Guillemin-Sternberg. Invent Math, 1998, 132(2):229-259 [23] Tian Y, Zhang W. Quantization formula for symplectic manifolds with boundary. Geom Funct Anal, 1999, 9(3):596-640 [24] Vergne M. Multiplicities formula for geometric quantization. I, II. Duke Math J, 1996, 82(1):143-179, 181-194 [25] Vergne M. Quantification géométrique et réduction symplectique. Astérisque, 2002, (282):249-278 [26] Vergne M. Applications of equivariant cohomology//International Congress of Mathematicians. Vol I. Zürich:Eur Math Soc, 2007:635-664 [27] Zhang W. Holomorphic quantization formula in singular reduction. Commun Contemp Math, 1999, 1(3):281-293 |