[1] Andrews G E, Richard R Askey, Ranjan R. Special functions//Encyclopedia of Mathematics and its Applications, 71. Cambridge:Cambridge University Press, 1999 [2] Berndt B C. Ramanujan's Notebooks. Part III. New York:Springer-Verlag, 1985 [3] Berndt B C. Ramanujan's Notebooks. Part IV. New York:Springer-Verlag, 1994 [4] Katsurada M. Asymptotic expansions of certain q-series and a formula of Ramanujan for specific values of the Riemann zeta function. Acta Arithmetica, 2003, 107(3):269-298 [5] Fruchard A, Zhang C. Remarques sur les développements asymptotiques. Annales de la Faculté des sciences de Toulouse, Sér 6, 1999, 8:91-115 [6] Malgrange B. Sommation des séries divergentes. Exposition Math, 1995, 13(2/3):163-222 [7] Rademacher H. Topics in Analytic Number Theory. Springer-Verlag, 1973 [8] Ramis J -P. Gevrey asymptotics and applications to holomorphic ordinary differential equations//Differential Equations & Asymptotic Theory in Mathematical Physics (Wuhan Univ, China, 2003). Series in Analysis, 2. World Scientific, 2004:44-99 [9] Ramis J -P, Sauloy J, Zhang C. Local analytic classification of q-difference equations. Astérique, 2013, 355:vi+151 pages [10] Watson G N. The final problem:An account of the mock theta functions. J London Math Soc, 1936, 11:55-80 [11] Whittaker E T, Watson G N. A Course of Modern Analysis. Fourth ed. Cambridge Univ Press, 1927 [12] Zagier D. Ramanujan's mock theta functions and their applications (after Zwegers and Ono-Bringmann), Séminaire Bourbaki. Vol 2007/2008. Astérisque, 2009, 326:143-164 [13] Zhang C. On the modular behaviour of the infinite product (1-x)(1-xq)(1-xq2)(1-xq3) …. C R Acad Sci Paris, Ser I, 2011, 349:725-730 [14] Zhang C. On the mock theta behavior of Appell-Lerch series. C R Acad Sci Paris, Ser I, 2015, 353(12):1067-1073 [15] Zhang C. A modular-type formula for (x; q)∞. Ramanujan J, 2018, 46(1):269-305 |