[1] Nicolis G.Introduction to Nonlinear Science. Cambridge: Cambridge University Press, 1995 [2] Lam L.Introduction to Nonlinear Physics. Berlin: Springer, 2003 [3] Chai J, Tian B, Sun W R, et al.Solitons and rouge waves for a generalized (3+1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation in fluid mechanics. Comput Math Appl, 2016, 71(10): 2060-2068 [4] Manikandan K, Muruganandam P, Senthilvelan M, et al. Manipulating matter rogue waves and breathers in Bose-Einstein condensates. Phys Rev E, 2014, 90(6): Art 062905 [5] Ding C C, Gao Y T, Li L Q. Breathers and rogue waves on the periodic background for the Gerdjikov-Ivanov equation for the Alfv$\acute{\text{e}}$n waves in an astrophysical plasma. Chaos, Solitons & Fractals, 2019, 120: 259-265 [6] Sakkaravarthi K, Mareeswaran R B, Kanna T. Engineering optical rogue waves and breathers in a coupled nonlinear Schr$\ddot{\text{o}}$dinger system with four-wave mixing effect. Phys Scr, 2020, 95(9): Art 095202 [7] Dudley J M, Dias F, Erkintalo M, et al. Instabilities, breathers and rogue waves in optics. Nat Photonics, 2014, 8(10): 755-764 [8] Salman H. Breathers on quantized superfluid vortices. Phys Rev Lett, 2013, 111(16): Art 165301 [9] Zhao F, Li Z D, Li Q Y, et al.Magnetic rogue wave in a perpendicular anisotropic ferromagnetic nanowire with spin-transfer torque. Ann Phys, 2012, 327(9): 2085-2095 [10] Liu J G, Zhu W H. Breather wave solutions for the generalized shallow water wave equation with variable coefficients in the atmosphere, rivers, lakes and oceans. Comput Math Appl, 2019, 78(3): 848-856 [11] Onorato M, Residori S, Bortolozzo U, et al. Rogue waves and their generating mechanisms in different physical contexts. Phys Rep, 2013, 528(2): 47-89 [12] Akhmediev N,Soto-Crespo J M, Ankiewicz A. Extreme waves that appear from nowhere: on the nature of rogue waves. Phys Lett A, 2009, 373(25): 2137-2145 [13] Flach S, Willis C R. Discrete breathers. Phys Rep, 1998, 295: 181-264 [14] Dysthe K B, Trulsen K. Note on breather type solutions of the NLS as models for freak-waves. Phys Scr, 1999, 1999(T82): Art 48 [15] Ten I, Tomita H. Simulation of the ocean waves and appearance of freak waves. Reports of RIAM Symposium, 2006, 17SP1-2: 10-11 [16] Zhao L C, Ling L, Yang Z Y. Mechanism of kuznetsov-ma breathers. Phys Rev E, 2018, 97(2): Art 022218 [17] Guo B L, Ling L M. Rogue wave, breathers and bright-dark-rogue solutions for the coupled Schr$\ddot{\text{o}}$dinger equations. Chin Phys Lett, 2011, 28(11): 110202-110202 [18] Chowdury A, Ankiewicz A, Akhmediev N. Moving breathers and breather-to-soliton conversions for the Hirota equation. Proc Math Phys Eng Sci, 2015, 471(2180): Art 20150130 [19] Liu C, Yang Z Y, Zhao L C, et al. State transition induced by higher-order effects and background frequency. Phys Rev E, 2015, 91(2): Art 022904 [20] Wang L, Zhang J H, Wang Z Q, et al. Breather-to-soliton transitions, nonlinear wave interactions,modulational instability in a higher-order generalized nonlinear Schr$\ddot{\text{o}}$dinger equation. Phys Rev E, 2016, 93(1): Art 012214 [21] Wu Z J, Tian S F. Breather-to-soliton conversions and their mechanisms of the (2+1)-dimensional generalized Hirota-Satsuma-Ito equation. Math Comput Simul, 2023, 210: 235-259 [22] Zhang J H, Wang L, Liu C. Superregular breathers, characteristics of nonlinear stage of modulation instability induced by higher-order effects. Proc R Soc A, 2017, 473(2199): Art 20160681 [23] Wang L, Zhang J H, Liu C, et al. Breather transition dynamics, Peregrine combs and walls,modulation instability in a variable-coefficient nonlinear Schr$\ddot{\text{o}}$dinger equation with higher-order effects. Phys Rev E, 2016, 93(6): Art 062217 [24] Wang L, Wu X, Zhang H Y. Superregular breathers and state transitions in a resonant erbium-doped fiber system with higher-order effects. Phys Lett A, 2018, 382(37): 2650-2654 [25] Yu F, Li L. Dynamics of some novel breather solutions and rogue waves for the PT-symmetric nonlocal soliton equations. Nonlinear Dyn, 2019, 95: 1867-1877 [26] Yuan F, Cheng Y, He J. Degeneration of breathers in the Kadomttsev-Petviashvili I equation. Commun Nonlinear Sci, 2020, 83: Art 105027 [27] Hu W Q, Gao Y T, Jia S L, et al. Periodic wave, breather wave and travelling wave solutions of a (2+1)-dimensional B-type Kadomtsev-Petviashvili equation in fluids or plasmas. Eur Phys J Plus, 2016, 131: 1-19 [28] Duan C, Yu F, Tian M. Some novel solitary wave characteristics for a generalized nonlocal nonlinear Hirota (GNNH) equation. Int J Nonlinear Sci Numer Simul, 2019, 20(3/4): 441-448 [29] Ma H, Yue S, Gao Y, et al. Lump solution, breather soliton and more soliton solutions for a (2+1)-dimensional generalized Benjamin-Ono equation. Qual Theory Dyn Syst, 2023, 22(2): Art 72 [30] Sun W R, Wang L, Xie X Y. Vector breather-to-soliton transitions and nonlinear wave interactions induced by higher-order effects in an erbium-doped fiber. Phys A, 2018, 499: 58-66 [31] Zhang X, Wang L, Liu C, et al. High-dimensional nonlinear wave transitions and their mechanisms. Chaos, 2020, 30(11): Art 113107 [32] Yin Z Y, Tian S F. Nonlinear wave transitions and their mechanisms of (2+1)-dimensional Sawada-Kotera equation. Physica D, 2021, 427: Art 133002 [33] Zhu C, Long C X, Zhou Y T, et al. Dynamics of multi-solitons, multi-lumps and hybrid solutions in (2+1)-dimensional Korteweg-de Vries-Sawada-Kotera-Ramani equation. Results Phys, 2022, 34: Art 105248 [34] Wei P F, Long C X, Zhu C, et al. Soliton molecules, multi-breathers and hybrid solutions in (2+1)-dimensional Korteweg-de Vries-Sawada-Kotera-Ramani equation. Chaos, Solitons & Fractals, 2022, 158: Art 112062 [35] Ma H, Gao Y, Deng A. Novel y-type and hybrid solutions for the (2+1)-dimensional Korteweg-de Vries-Sawada-Kotera-Ramani equation. Nonlinear Dyn, 2023, 111(5): 4645-4656 [36] Chen W, Tang L, Tian L. New interaction solutions of the KdV-Sawada-Kotera-Ramani equation in various dimensions. Phys Scr, 2023, 98(5): Art 055217 [37] Li L, Dai Z, Cheng B, et al. Nonlinear superposition between lump soliton and other nonlinear localized waves for the (2+1)-dimensional Korteweg-de Vries-Sawada-Kotera-Ramani equation. Results Phys, 2023, 49: Art 106516 [38] Osborne A R.Nonlinear ocean wave and the inverse scattering transform//Pike E R, Sabatier P C. Scattering: Scattering and Inverse Scattering in Pure and Applied Science. London: Academic Press, 2002: 637-666 [39] Wang D S, Zhu X. Direct and inverse scattering problems of the modified Sawada-Kotera equation: Riemann-Hilbert approach. Proc Math Phys Eng Sci, 2022, 478(2268): Art 20220541 |