[1] Cahn J W, Hilliard J E. Free energy of a nonuniform system. I. Interfacial free energy. J Chem Phys, 1958, 28(2): 258-267 [2] Buff F P, Lovett R, Stillinger J F. Interfacial density profile for fluids in the critical region. Phys Rev Lett, 1965, 15(15): 621-623 [3] Caginalp G. An analysis of a phase field model of a free boundary. Arch Rational Mech Anal, 1986, 92: 205-245 [4] Evans L C, Soner H M, Souganidis P E. Phase transitions and generalized motion by mean curvature. Comm Pure Appl Math, 1992, 45(9): 1097-1123 [5] Elliott C M, Garcke H. On the Cahn-Hilliard equation with degenerate mobility. SIAM J Math Anal, 1996, 27(2): 404-423 [6] Pacard F, Ritor$\rm{\acute{e}}$ M. From constant mean curvature hypersurfaces to the gradient theory of phase transitions. J Differential Geom, 2003, 64(3): 359-423 [7] Caffarelli L A, Muler N E. An $L^{\infty}$ bound for solutions of the Cahn-Hilliard equation. Arch Rational Mech Anal, 1995, 133: 129-144 [8] Liu S Q, Wang F, Zhao H J. Global existence and asymptotics of solutions of the Cahn-Hilliard equation. J Differential Equations, 2007, 238(2): 426-469 [9] Elliott C M, Zheng S M. On the Cahn-Hilliard equation. Arch Rational Mech Anal, 1986, 96(4): 339-357 [10] Li D. A regularization-free approach to the Cahn-Hilliard equation with logarithmic potentials. Discrete Contin Dyn Syst, 2022, 42(5): 2453-2460 [11] Rybka P, Hoffmann K H. Convergence of solutions to Cahn-Hilliard equation. Comm Partial Differential Equations, 1999, 24(4/5): 1055-1077 [12] Miranville A. The Cahn-Hilliard equation with a nonlinear source term. J Differential Equations, 2021, 294: 88-117 [13] Duan N, Wang J, Zhao X P. Well-posedness and large time behavior for Cahn-Hilliard-Oono equation. Z Angew Math Phys, 2023, 74(6): Art 226 [14] Galenko P, Jou D. Diffuse-interface model for rapid phase transformations in nonequilibrium systems. Phys Rev E, 2005, 71(4): Art 046125 [15] Galenko P, Lebedev V. Nonequilibrium effects in spinodal decomposition of a binary system. Phys Lett A, 2008, 372(7): 985-989 [16] Grasselli M, Schimperna G, Zelik S. Trajectory and smooth attractors for Cahn-Hilliard equations with inertial term. Nonlinearity, 2010, 23(3): 707-737 [17] Segatti A. On the hyperbolic relaxation of the Cahn-Hilliard equation in 3D: approximation and long time behaviour. Math Models Methods Appl Sci, 2007, 17(3): 411-437 [18] Khanmamedov A, Yayla S. Global attractors for the 2D hyperbolic Cahn-Hilliard equations. Z Angew Math Phys, 2018, 69(14): Art 17 [19] Grasselli M, Schimperna G, Zelik S. On the 2D Cahn-Hilliard equation with inertial term. Comm Partial Differential Equations, 2009, 34(2): 137-170 [20] Gurtin M E. Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Phys D, 1996, 92(3/4): 178-192 [21] Zheng S M, Milani A. Global attractors for singular perturbations of the Cahn-Hilliard equations. J Differential Equations, 2005, 209(1): 101-139 [22] Zheng S M, Milani A. Exponential attractors and inertial manifolds for singular perturbations of the Cahn-Hilliard equations. Nonlinear Anal, 2004, 57(5/6): 843-877 [23] Gatti S, Grasselli M, Pata V, Miranville A. Hyperbolic relaxation of the viscous Cahn-Hilliard equation in 3-D. Math Models Methods Appl Sci, 2005, 15(2): 165-198 [24] Kania M B. Global attractor for the perturbed viscous Cahn-Hilliard equation. Colloq Math, 2007, 109(2): 217-229 [25] Wang W K, Wu Z G. Optimal decay rate of solutions for Cahn-Hilliard equation with inertial term in multi-dimensions. J Math Anal Appl, 2012, 387(1): 349-358 [26] Payne L E, Sattinger D H. Saddle points and instability of nonlinear hyperbolic equations. Israel J Math, 1975, 22(3/4): 273-303 [27] Xu R Z, Su J. Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations. J Funct Anal, 2013, 264(12): 2732-2763 [28] Pang Y, R$\rm{\breve{a}}$dulescu V D, Xu R Z. Global existence and finite time blow-up for the $m$-Laplacian parabolic problem. Acta Math Sin Engl Ser, 2023, 39(8): 1497-1524 [29] Chen H, Xu H Y. Global existence and blow-up in finite time for a class of finitely degenerate semilinear pseudo-parabolic equations. Acta Math Sin Engl Ser, 2019, 35(7): 1143-1162 [30] Chen Y X.Global dynamical behavior of solutions for finite degenerate fourth-order parabolic equations with mean curvature nonlinearity. Commun Anal Mech 1)2023, 15(4): 658-694 [31] Xu R Z, Lian W, Niu Y. Global well-posedness of coupled parabolic systems. Sci China Math, 2020, 63(2): 321-356 [32] Chen H, Liu G W.Global existence, uniform decay and exponential growth for a class of semi-linear wave equation with strong damping. Acta Math Sci 2)2013, 33B(1): 41-58 [33] Lian W, Xu R Z. Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term. Adv Nonlinear Anal, 2020, 9(1): 613-632 [34] Luo Y B, Xu R Z, Yang C. Global well-posedness for a class of semilinear hyperbolic equations with singular potentials on manifolds with conical singularities. Calc Var Partial Differential Equations, 2022, 61(6): Art 210 [35] Temam R.Infinite-Dimensional Dynamical Systems in Mechanics and Physics. New York: Springer-Verlag, 1997 [36] Yang C, R$\rm{\breve{a}}$dulescu V D, Xu R Z, Zhang M Y. Global well-posedness analysis for the nonlinear extensible beam equations in a class of modified Woinowsky-Krieger models. Adv Nonlinear Stud, 2022, 22(1): 436-468 [37] Walter W L. Ordinary Differential Equations.New York: Springer-Verlag, 1998 [38] Evans L C. Partial Differential Equations. Providence: American Mathematical Society, 1998 [39] Xu R Z. Initial boundary value problem for semilinear hyperbolic equations and parabolic equations with critical initial data. Quart Appl Math, 2010, 68(3): 459-468 [40] Han J B, Wang K Y, Xu R Z, Yang C. Global quantitative stability of wave equations with strong and weak dampings. J Differential Equations, 2024, 390: 228-344 [41] Han J B, Xu R Z, Yang C. Continuous dependence on initial data and high energy blowup time estimate for porous elastic system. Commun Anal Mech, 2023, 15(2): 214-244 [42] Lax P D. Functional Analysis. New York: Wiley, 2002 [43] Kalantarov V K, Ladyzhenskaya O A. The occurrence of collapse for quasilinear equations of parabolic and hyperbolic types. J Soviet Math, 1978, 10: 53-70 [44] Gazzola F, Squassina M. Global solutions and finite time blow up for damped semilinear wave equations. Ann Inst H $\rm{Poincar\acute{e}}$ C Anal Non $\rm{Lin\acute{e}aire}$, 2006, 23(2): 185-207 [45] Yang Y B, Xu R Z. Nonlinear wave equation with both strongly and weakly damped terms: Supercritical initial energy finite time blow up. Commun Pure Appl Anal, 2019, 18(3): 1351-1358 |