[1] Cartan H.Sur La Possibilité Détendre Aux Fonctions De Plusieurs Variables Complexes La Théorie Des Fonctions Univalentes: Par Henri Cartan. Paris: Gauthier-Villars, 1933 [2] De Branges L. A proof of the Bieberbach conjecture. Acta Math, 1985, 154(1): 137-152 [3] Długosz R, Liczberski P. Some results of Fekete-Szegö type for Bavrin's families of holomorphic functions in $\mathbb C^n$. Annali di Matematica Pura ed Applicata, 2021, 200(4): 1841-1857 [4] Elin M, Jacobzon F. Note on the Fekete-Szegö problem for spirallike mappings in Banach spaces. Results Math, 2022, 77(3): Art 137 [5] Gong S. The Bieberbach Conjecture.Providence, RI: Amer Math Soc, 1999 [6] Graham I, Kohr G.Geometric Function Theory in One and Higher Dimensions. New York: Marcel Dekker, 2003 [7] Graham I, Hamada H, Kohr G. Parametric representation of univalent mappings in several complex variables. Can J Math, 2002, 54(2): 324-351 [8] Hamada H. Fekete-Szegö problems for spirallike mappings and close-to-quasi-convex mappings on the unit ball of a complex Banach space. Results Math, 2023, 78(3): Art 109 [9] Hamada H, Honda T. Sharp growth theorems and coefficient bounds for starlike mappings in several complex variables. Chinese Ann Math Ser B, 2008, 29(4): 353-368 [10] Hamada H, Honda T, Kohr G. Growth theorems and coefficient bounds for univalent holomorphic mappings which have parametric representation. J Math Anal Appl, 2006, 317(1): 302-319 [11] Hamada H, Kohr G, Kohr M. Fekete-Szegö problem for univalent mappings in one and higher dimensions. J Math Anal Appl, 2022, 516(2): Art 126526 [12] Hamada H, Kohr G, Kohr M. The Fekete-Szegö problem for starlike mappings and nonlinear resolvents of the Carathéodory family on the unit balls of complex Banach spaces. Anal Math Phys, 2021, 11(3): Art 115 [13] Honda T. The growth theorem for $k$-fold symmetric convex mappings. Bull London Math Soc, 2002, 34(6): 717-724 [14] Lai Y, Xu Q H. On the coefficient inequalities for a class of holomorphic mappings associated with spirallike mappings in several complex variables. Results Math, 2021, 76(4): Art 191 [15] Lin Y Y, Hong Y.Some properties of holomorphic maps in Banach spaces (in Chinese). Acta Math Sin, 1995, 38(2): 234-241 [16] Liu X S. On the quasi-convex mappings on the unit polydisk in $\mathbb C^n$. J Math Anal Appl, 2007, 335(1): 43-55 [17] Liu X S, Liu T S. Sharp distortion theorems for a subclass of biholomorphic mappings which have a parametric representation in several complex variables. Chinese Ann Math, 2016, 37(4): 553-570 [18] Liu X S, Liu T S. The estimates of all homogeneous expansions for a subclass of biholomorphic mappings which have parametric representation in several complex variables. Acta Math Sin English Ser, 2017, 33(2): 287-300 [19] Liu X S, Liu T S. The sharp estimate of the third homogeneous expansion for a class of starlike mappings of order $\alpha$ on the unit polydisk in $\mathbb C^n$. Acta Math Sci, 2012, 32B(2): 752-764 [20] Liu X S, Liu T S, Xu Q H. A proof of a weak version of the Bieberbach conjecture in several complex variables. Sci China Math, 2015, 58: 2531-2540 [21] Liu H Y, Tu Z H, Xiong L P. Distortion theorems for classes of g-parametric starlike mappings of real order in $\mathbb C^n$. Acta Math Sci, 2023, 43B(4): 1491-1502 [22] Rogosinski W. On the coefficients of subordinate functions. Proc Lond Math Soc, 1945, 2(1): 48-82 [23] Roper K A, Suffridge T J. Convexity properties of holomorphic mappings in $\mathbb C^n$. Trans Amer Math Soc, 1999, 351(5): 1803-1833 [24] Sima X Y, Tu Z H, Xiong L P. Some results of homogeneous expansions for a class of biholomorphic mappings defifined on a Reinhardt domain in $\mathbb{C}^n$. Demonstratio Mathematica, 2023, 56(1): Art 20220242 [25] Xiong L P. Distortion results for a certain subclass of biholomorphic mappings in $\mathbb C^n$. Complex Var Elliptic Equ, 2022, 67(4): 887-897 [26] Xiong L P, Sima X Y, Ouyang D L. Bounds of all terms of homogeneous expansions for a subclass of g-parametric biholomorphic mappings in $\mathbb C^n$. Anal Math Phys, 2023, 13(2): Art 34 [27] Xiong L P, Xiong J Z, Zhang R Y. Some results of quasi-convex mappings which have a $\Phi$-parametric representation in higher dimensions. Analysis and Mathematical Physics, 2024, 14(3): Art 68 [28] Xu Q H, Liu T. On the Fekete and Szegö problem for the class of starlike mappings in several complex variables. Abstr Appl Anal, 2014, 2014: Art 807026 [29] Xu Q H, Xu X. On the coefficient inequality for a subclass of strongly starlike mappings of order $\alpha$ in several complex variables. Results Math, 2018, 73: Art 73 [30] Zhang W J, Dong D Z, Wang Y Z.The growth theorem for convex maps on the Banach space (in Chinese). Chin Quart J Math, 1992, 7(2): 84-87 [31] Zhang R Y, Ouyang D L, Xiong L P. Coefficient problems of quasi-convex mappings of type B on the unit ball in complex Banach spaces. Mathematica Slovaca, 2023, 73(5): 1207-1216 |