[1] Arnold L, Random Dynamical Systems. Berlin: Springer, 1998 [2] Arrieta J M, Cholewa J W, Dlotko T, Rodríguez-Bernal A. Asymptotic behavior and attractors for reaction diffusion equations in unbounded domains. Nonlinear Anal, 2004, 56(4): 515—554 [3] Arrieta J M, Santamaría E. Distance of attractors of reaction-diffusion equations in thin domains. J Differential Equations, 2017, 263(9): 5459-5506 [4] Bates P W, Lu K, Wang B. Random attractors for stochastic reaction-diffusion equations on unbounded domains. J Differential Equations, 2009, 246(2): 845-869 [5] Beyn W J, Pilyugin S Y. Attractors of reaction diffusion systems on infinite lattices. J Dynam Differential Equations, 2003, 15(2/3): 485-515 [6] Britton N F.Reaction-Diffusion Equations and Their Applications to Biology. London: Academic Press, 1986 [7] Caraballo T, Chen Z, Yang D. Random dynamics and limiting behaviors for 3D globally modified Navier-Stokes equations driven by colored noise. Stud Appl Math, 2023, 151(1): 247-284 [8] Caraballo T, Kloeden P E, Schmalfuß B. Exponentially stable stationary solutions for stochastic evolution equations and their perturbation. Appl Math Optim, 2004, 50(3): 183-207 [9] Chen P, Wang B, Wang R, Zhang X. Multivalued random dynamics of Benjamin-Bona-Mahony equations driven by nonlinear colored noise on unbounded domains. Math Ann, 2023, 386(1/2): 343-373 [10] Chen P, Zhang X. Random dynamics of stochastic BBM equations driven by nonlinear colored noise on unbounded channel. J Evol Equ, 2022, 22(4): Art 87 [11] Crauel H, Debussche A, Flandoli F. Random attractors. J Dynam Differential Equations, 1997, 9(2): 307-341 [12] Crauel H, Flandoli F. Attractors for random dynamical systems. Probab Theory Relat Fields, 1994, 100(3): 365-393 [13] Dafallah A A, Mohamed A, Ma Q. Random attractors for a stochastic wave equations with nonlinear damping and multiplicative noise. J Math, 2016, 12: 39-55 [14] Eden A, Foias C, Nicolaenko B, Temam R.Exponential Attractors for Dissipative Evolution Equations. Pairs: Masson, 1994 [15] Fan X. Attractors for a damped stochastic wave equation of Sine-Gordon type with sublinear multiplicative noise. Stoch Anal Appl, 2006, 24(4): 767-793 [16] Fan X. Random attractors for damped stochastic wave equations with multiplicative noise. Internat J Math, 2008, 19(4): 421-437 [17] Gu A, Guo B, Wang B. Long term behavior of random Navier-Stokes equations driven by colored noise. Discrete Contin Dyn Syst Ser B, 2020, 25(7): 2495-2532 [18] Han Z, Zhou S. Random exponential attractor for the 3D non-autonomous stochastic damped Navier-Stokes equation. J Dynam Differential Equations, 2023, 35(2): 1133-1149 [19] Li H, You Y, Tu J. Random attractors and averaging for non-autonomous stochastic wave equations with nonlinear damping. J Differential Equations, 2015, 258(1): 148-190 [20] Li L, Chen Z. Asymptotic behavior of non-autonomous random Ginzburg-Landau equation driven by colored noise. Discrete Contin Dyn Syst Ser B, 2021, 26(6): 3303-3333 [21] Li Y, Li B, Li X. Uniform random attractors for a non-autonomous stochastic strongly damped wave equation on $\mathbb {R}^{\mathbb {N}}$. Z Angew Math Phys, 2022, 73(3): Art 106 [22] Li Y, Li X, Zuo J. Random attractors for non-autonomous stochastic wave equations with strong damping and additive noise on $\mathbb {R}^N$. J Appl Anal Comput, 2023, 13(4): 1739-1765 [23] Marion M. Attractors for reaction-diffusion equations: existence and estimate of their dimension. Appl Anal, 1987, 25(1/2): 101-147 [24] Ridolfi L, D'Odorico P, Laio F. Noise-Induced Phenomena in the Environmental Sciences. Cambridge: Cambridge University Press, 2011 [25] Shirikyan A, Zelik S. Exponential attractors for random dynamical systems and applications. Stoch Partial Differ Equ Anal Comput, 2013, 1(2): 241-281 [26] Slavík J. Attractors for stochastic reaction-diffusion equation with additive homogeneous noise. Czechoslovak Math J, 2021, 71(1): 21-43 [27] Uhlenbeck G, Ornstein L. On the theory of Brownian motion. Phys Rev, 1930, 36(5): 823-841 [28] Wang B. Attractors for reaction-diffusion equations in unbounded domains. Phys D, 1999, 128(1): 41-52 [29] Wang B. Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms. Stoch Dyn, 2014, 14(4): Art 1450009 [30] Wang B. Random attractors for the stochastic Benjamin-Bona-Mahony equation on unbounded domains. J Differential Equations, 2009, 246(6): 2506-2537 [31] Wang B. Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems. J Differential Equations, 2012, 253(5): 1544-1583 [32] Wang B. Well-posedness and long term behavior of supercritical wave equations driven by nonlinear colored noise on $\mathbb{R}^n$. J Funct Anal, 2022, 283(2): Art 109498 [33] Wang G, Tang Y. Random attractors for stochastic reaction-diffusion equations with multiplicative noise in $H^1_0$. Math Nachr, 2014, 287(14/15): 1774-1791 [34] Wang M, Uhlenbeck G. On the theory of Brownian motion II. Rev Modern Phys, 1945, 17(2/3): 323-342 [35] Wang X, Lu K, Wang B. Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains. J Differential Equations, 2018, 264(1): 378-424 [36] Wang Z, Zhou S. Existence and upper semicontinuity of random attractors for non-autonomous stochastic strongly damped wave equation with multiplicative noise. Discrete Contin Dyn Syst, 2017, 37(5): 2787-2812 [37] Wang Z, Zhou S. Random attractor for stochastic reaction-diffusion equation with multiplicative noise on unbounded domains. J Math Anal Appl, 2011, 384(1): 160-172 [38] Zelik S V. Attractors of reaction-diffusion systems in unbounded domains and their spatial complexity. Comm Pure Appl Math, 2003, 56(5): 584-637 [39] Zhang X, Yuan R. Pullback attractor for random chemostat model driven by colored noise. Appl Math Lett, 2021, 112(1): Art 106833 [40] Zhao W Q, Zhang Y J. Upper semi-continuity of random attractors for a non-autonomous dynamical system with a weak convergence condition. Acta Math Sci, 2020, 40(4): 921-933 [41] Zhou S. Random exponential attractor for stochastic reaction-diffusion equation with multiplicative noise in $\mathbb{R}^3$. J Differential Equations, 2017, 263(10): 6347-6383 [42] Zhou S, Zhao M. Fractal dimension of random invariant sets for nonautonomous random dynamical systems and random attractor for stochastic damped wave equation. Nonlinear Anal, 2016, 133: 292-318 |