[1] Adler R L, Konheim A G, McAndrew M H. Topological entropy. Trans Amer Math Soc, 1965, 114: 309-319 [2] Bowen R. Topological entropy for non-compact sets. Trans Amer Math Soc, 1973, 184: 125-136 [3] Breiman L. The individual theorem of information theory. Ann of Math Stat, 1957, 28: 809-811; errata 1960, 31: 809-810 [4] Brin M, Katok A. On Local Entropy. New York: Springer-Verlag, 1983: 30-38 [5] Dinaburg E I. The correlation between topological entropy and metric entropy. Soviet Math, 1970, 11: 13-16 [6] Einsiedler M, Ward T.Ergodic Theory with a View Towards Number Theory. London: Springer-Verlag, 2011 [7] Feng D, Huang W. Variational principles for topological entropies of subsets. J Funct Anal, 2012, 263: 2228-2254 [8] Goodman T N T. Relating topological entropy and measure entropy. Bull London Math Soc, 1971, 3: 176-180 [9] Goodwyn L W. Topological entropy bounds measure-theoretic entropy. Proc Amer Math Soc, 1969, 23: 679-688 [10] Gröger M, Jäger T. Some remarks on modified power entropy. Contem Math, 2016, 669: 105-122 [11] Huang P, Chen E, Wang C. Entropy formulae of conditional entropy in mean metrics. Discrete and Continuous Dynamical Systems, 2018, 38(10): 5129-5144 [12] Huang W, Wang Z, Ye X. Measure complexity and Möbius disjointness. Advances in Mathematics, 2019, 347: 827-858 [13] Katok A. Lyapunov exponents, entropy and periodic orbits for diffemorphisms. Publ Math Inst Hautes Études Sci, 1980, 51: 137-173 [14] Kolmogorov A N. New metric invariant of transitive dynamical systems and endomorphisms of Lebesgue spaces. Doklady of Russian Academy of Sciences, 1958, 119(5): 861-864 [15] McMillan B. The basic theorems of information theory. Ann of Math Statistics, 1953, 24: 196-219 [16] Rahimi M, Riazi A. Entropy functional for continuous systems of finite entropy. Acta Math Sci, 2012, 32B(2): 775-782 [17] Rahimi M, Hedyeloo M, Bidabadi N. A note on localization of entropy of doubly stochastic operators. Iran J Sci Technol Trans Sci, 2019, 43: 2579-2584 [18] Shannon C. A mathematical theory of communication. Bell Syst Tech Journal, 1948, 27(3): 379-423 [19] Sinai Y G. On the notion of entropy of a dynamical system. Doklady of Russian Academy of Sciences, 1959, 124: 768-771 [20] Zhou X, Zhou L, Chen E. Brin-Katok formula for the measure theoretic $r$-entropy. C R Acad Sci Paris Ser I, 2014, 352: 473-477 [21] Zhou X. A formula of conditional entropy and some applications. Discrete Contin Dyn Syst Ser A, 2016, 36: 4063-4075 [22] Zhu Y. On local entropy of random transformations. Stoch Dyn, 2008, 8: 197-207 [23] Zhu Y. Two notes on measure-theoretic entropy of random dynamic systems. Acta Math Sin, 2009, 25: 961-970 |