[1] Aarach N, Zhu N. Global well-posedness of 3D homogeneous and inhomogeneous MHD system with small unidirectional derivative. Calc Var Partial Differential Equations, 2023, 62: Art 117 [2] Acheritogaray M, Degond P, Frouvelle A, Liu J G. Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system. Kinet Relat Models, 2011, 4(4): 901-918 [3] Bahouri H, Chemin J Y, Danchin R.Fourier Analysis and Nonlinear Partial Differential Equations. Heidelberg: Springer, 2011 [4] Balbus S A, Terquem C. Linear analysis of the Hall effect in Protostellar disks. Astrophys J, 2001, 552(1): 235-247 [5] Benvenutti M J, Ferreira L C F. Existence and stability of global large strong solutions for the Hall-MHD system. Differential Integral Equations, 2016, 29: 977-1000 [6] Cai Y, Lei Z. Global well-posedness of the incompressible magnetohydrodynamics. Arch Ration Mech Anal, 2018, 228(3): 969-993 [7] Chae D, Degond P, Liu J G. Well-posedness for Hall-magnetohydrodynamics. Ann Inst H Poincaré C Anal Non Linéaire, 2014, 31(3): 555-565 [8] Chae D, Lee J. On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics. J Differential Equations, 2014, 256(11): 3835-3858 [9] Chae D, Wan R H, Wu, J H. Local well-posedness for the Hall-MHD equations with fractional magnetic diffusion. J Math Fluid Mech, 2015, 17(4): 627-638 [10] Chemin J Y, Paicu M, Zhang P. Global large solutions to 3-D inhomogeneous Navier-Stokes system with one slow variable. J Differential Equations, 2014, 256(1): 223-252 [11] Chemin J Y, Zhang P. Remarks on the global solutions of 3-D Navier-Stokes system with one slow variable. Comm Partial Differential Equations, 2015, 40(5): 878-896 [12] Chen Q L, Miao C X, Zhang Z F. The Beale-Kato-Majda criterion for the 3D magneto-hydrodynamics equations. Comm Math Phys, 2007, 275(3): 861-872 [13] Chen Q L, Miao C X, Zhang Z F. On the regularity criterion of weak solution for the 3D viscous magneto-hydrodynamics equations. Comm Math Phys, 2008, 284(3): 919-930 [14] Dai M M. Local well-posedness for the Hall-MHD system in optimal Sobolev spaces. J Differential Equations, 2021, 289: 159-181 [15] Dai M M, Liu H. On well-posedness of generalized Hall-magneto-hydrodynamics. Z Angew Math Phys, 2022, 73(4): Art 139 [16] Danchin R, Tan J. On the well-posedness of the Hall-magnetohydrodynamics system in critical spaces. Comm Partial Differential Equations, 2021, 46(1): 31-65 [17] Danchin R, Tan J. The global solvability of the Hall-magnetohydrodynamics system in critical Sobolev spaces. Commun Contemp Math, 2022, 24(10): Art 2150099 [18] Dumas E, Sueur F. On the weak solutions to the Maxwell-Landau-Lifshitz equations and to the Hall-magneto-hydrodynamic equations. Comm Math Phys, 2014, 330(3): 1179-1225 [19] Forbes, T. Magnetic reconnection in solar flares. Geophys Astrophys Fluid Dyn, 1991, 62: 15-36 [20] He C, Xin Z P. On the regularity of weak solutions to the magnetohydrodynamic equations. J Differential Equations, 2005, 213(2): 235-254 [21] Houamed H. Well-posedness and long time behavior for the electron inertial Hall-MHD system in Besov and Kato-Herz spaces. J Math Anal Appl, 2021, 501(2): Art 125208 [22] Huba J D.Hall Magnetohydrodynamics-A Tutorial. Berlin: Springer, 2003 [23] Jeong I J, Oh S J. On the Cauchy problem for the Hall and electron magnetohydrodynamic equations without resistivity I: Illposedness near degenerate stationary solutions. Ann PDE, 2022, 8(2): Art 15 [24] Jia X J, Zhou Y. Regularity criteria for 3D Hall-MHD equations. Z Angew Math Phys, 2022, 73(6): Art 244 [25] Ju N. The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations. Comm Math Phys, 2005, 255(1): 161-181 [26] Li J Y, Zheng X X. The well-posedness of the incompressible magnetohydro dynamic equations in the framework of Fourier-Herz space. J Differential Equations, 2017, 263(6): 3419-3459 [27] Lighthill M J. Studies on magneto-hydrodynamic waves and other anisotropic wave motions. Philos Trans Roy Soc London Ser A, 1960, 252: 397-430 [28] Liu L Q. On the well-posedness of magnetohydrodynamics system with Hall and ion-slip in critical spaces. Z Angew Math Phys, 2020, 71(4): Art 134 [29] Liu L Q. On the global existence to Hall-MHD system. Discrete Contin Dyn Syst Ser B, 2022, 27(12): 7301-7314 [30] Liu L Q. Well-posedness for the Hall-magnetohydrodynamics system in critical space. J Math Anal Appl, 2022, 505(2): Art 125621 [31] Liu L Q, Tan J. Global well-posedness for the Hall-magnetohydrodynamics system in larger critical Besov spaces. J Differential Equations, 2021, 274: 382-413 [32] Liu Q, Zhao J H. Global well-posedness for the generalized magneto-hydrodynamic equations in the critical Fourier-Herz spaces. J Math Anal Appl, 2014, 420(2): 1301-1315 [33] Liu Y L, Paicu M, Zhang P. Global well-posedness of 3-D anisotropic Navier-Stokes system with small unidirectional derivative. Arch Ration Mech Anal, 2020, 238(2): 805-843 [34] Liu Y L, Zhang P. Global solutions of 3-D Navier-Stokes system with small unidirectional derivative. Arch Ration Mech Anal, 2020, 235(2): 1405-1444 [35] Ma C C. Global well-posedness of the 3D incompressible Hall-MHD equations for small initial data in certain Besov spaces. Rocky Mountain J Math, 2020, 50(6): 2127-2139 [36] Nakasato R. Global well-posedness for the incompressible Hall-magnetohydrodynamic system in critical Fourier-Besov spaces. J Evol Equ, 2022, 22(1): Art 20 [37] Paicu M, Zhu N. Global well-posedness of 3D inhomogeneous Navier-Stokes system with small unidirectional derivative. Nonlinearity, 2023, 36(5): 2403-2434 [38] Shalybkov D, Urpin V. The Hall effect and the decay of magnetic fields. Astron Astrophys, 1997, 321: 685-690 [39] Wan R H. Global regularity for generalized Hall magneto-hydrodynamics systems. Electron J Differential Equations, 2015, 2015: Art 179 [40] Wan R H, Zhou Y. On global existence, energy decay and blow-up criteria for the Hall-MHD system. J Differential Equations, 2015, 259(11): 5982-6008 [41] Wan R H, Zhou Y. Global well-posedness, BKM blow-up criteria and zero $h$ limit for the 3D incompressible Hall-MHD equations. J Differential Equations, 2019, 267(6): 3724-3747 [42] Wardle M. Star formation and the Hall effect. Astrophy Space Sci, 2004, 292(1): 231-237 [43] Wu J H. Generalized MHD equations. J Differential Equations, 2003, 195(2): 284-312 [44] Wu J H. Lower bounds for an integral involving fractional Laplacians and the generalized Navier-Stokes equations in Besov spaces. Comm Math Phys, 2006, 263(3): 803-831 [45] Wu J H. Global regularity for a class of generalized magnetohydrodynamic equations. J Math Fluid Mech, 2011, 13(2): 295-305 [46] Ye Z. Regularity criteria and small data global existence to the generalized viscous Hall-magnetohydrodynamics. Comput Math Appl, 2015, 70(8): 2137-2154 [47] Ye Z. Global well-posedness and decay results to 3D generalized viscous magnetohydrodynamic equations. Ann Mat Pura Appl, 2016, 195(4): 1111-1121 [48] Ye Z. Well-posedness results for the 3D incompressible Hall-MHD equations. J Differential Equations, 2022, 321: 130-216 [49] Ye Z, Zhao X P. Global well-posedness of the generalized magnetohydrodynamic equations. Z Angew Math Phys, 2018, 69(5): Art 126 [50] Zhang H L, Zhao K. On 3D Hall-MHD equations with fractional Laplacians: global well-posedness. J Math Fluid Mech, 2021, 23(3): Art 82 [51] Zhang N Q. The 3D incompressible Hall-MHD equations: global well-posedness. Acta Appl Math, 2022, 178: Art 1 [52] Zhang S H. Well-posedness for the incompressible Hall-MHD system with initial magnetic field belonging to $H^{3/2}({\Bbb R}^3)$. J Math Fluid Mech, 2023, 25(1): Art 20 [53] Zhang X P. Space-time decay of solutions to three-dimensional MHD equations with Hall and ion-slip effects. J Math Phys, 2021, 62(6): Art 061507 |