[1] Anderson J Q, Ryan R A, Wu M, Carr L D. Complex solitary wave dynamics, pattern formation and chaos in the gain-loss nonlinear Schrödinger equation. New J Phys, 2014, 16: Art 023025 [2] Barbu V, Röckner M, Zhang D. Stochastic nonlinear Schrödinger equations with linear multiplicative noise: rescaling approach. J Nonlinear Sci, 2014, 24: 383-409 [3] Barbu V, Röckner M, Zhang D. Stochastic nonlinear Schrödinger equations. Nonlinear Anal, 2016, 136: 168-194 [4] Bouard A D, Debussche A. A stochastic nonlinear Schrödinger equation with multiplicative noise. Comm Math Phys, 1999, 205: 161-181 [5] Bouard A D, Debussche A. The stochastic nonlinear Schrödinger equation in $H^{1}$. Stochastic Anal Appl, 2003, 21: 97-126 [6] Brzeźniak Z, Ferrario B, Zanella M. Invariant measures for a stochastic nonlinear and damped 2D Schrödinger equation. Nonlinearity, 2024, 37: Art 015001 [7] Brzeźniak Z, Ferrario B, Zanella M. Ergodic results for the stochastic nonlinear Schrödinger equation with large damping. J Evol Equ, 2023, 23: Art 19 [8] Brzeźniak Z, Hornung F, Weis L. Martingale solutions for the stochastic nonlinear Schrödinger equation in the energy space. Probab Theory Related Fields, 2019, 174: 1273-1338 [9] Brzeźniak Z, Hornung F, Manna U. Weak martingale solutions for the stochastic nonlinear Schrödinger equation driven by pure jump noise. Stoch Partial Differ Equ Annal Comput, 2020, 8: 1-53 [10] Brzeźniak Z, Millet A. On the stochastic Strichartz estimates and the stochastic nonlinear Schrödinger equation on a compact Riemannian manifold. Potential Anal, 2014, 41: 269-315 [11] Crutcher S, Biswas A, Aggarwal M D, Edwards M E. Oscillatory behavior of spatial solitons in two-dimensional waveguides and stationary temporal power law solitons in optical fibers. J Electromagn Waves Appl, 2006, 20(6): 761-772 [12] Debussche A, Odasso C. Ergodicity for a weakly damped stochastic non-linear Schrödinger equation. J Evol Equ, 2005, 5: 317-356 [13] Ekren I, Kukavica I, Ziane M. Existence of invariant measures for the stochastic damped Schrödinger equation. Stoch Partial Differ Equ Anal Comput, 2017, 5: 343-367 [14] Ginibre J, Velo G. On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case. J Functional Analysis, 1979, 32: 1-32 [15] Grecksch W, Lisei H. Stochastic nonlinear equations of Schrödinger type. Stoch Anal Appl, 2011, 29: 631-653 [16] Hairer M, Mattingly J C. Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing. Ann of Math, 2006, 164: 993-1032 [17] Hayashi N, Nakamitsu K, Tsutsumi M. On solutions of the initial value problem for the nonlinear Schrödinger equations. J Funct Anal, 1987, 71: 218-245 [18] Hornung F. The stochastic nonlinear Schrödinger equation in unbounded domains and non-compact manifolds. NoDEA Nonlinear Differential Equations Appl, 2020, 27: Art 40 [19] Hornung F. The nonlinear stochastic Schrödinger equation via stochastic Strichartz estimates. J Evol Equ, 2018, 18: 1085-1114 [20] Kato T. On nonlinear Schrödinger equations. Ann Inst H Poincaré Phys Théor, 1987, 46: 113-129 [21] Keller D, Lisei H. Variational solution of stochastic Schrödinger equations with power-type nonlinearity. Stoch Anal Appl, 2015, 33: 653-672 [22] Kim J U. Invariant measures for a stochastic nonlinear Schrödinger equation. Indiana Univ Math J, 2006, 55: 687-717 [23] Kuksin S, Shirikyan A. Coupling approach to white-forced nonlinear PDEs. J Math Pures Appl, 2002, 81: 567-602 [24] Lisei H, Keller D. A stochastic nonlinear Schrödinger problem in variational formulation. NoDEA Nonlinear Differential Equations Appl, 2016, 23: Art 22 [25] Mattingly J C. Exponential convergence for the stochastically forced Navier-Stokes equations and other partially dissipative dynamics. Comm Math Phys, 2002, 230: 421-462 [26] Odasso C. Ergodicity for the stochastic complex Ginzburg-Landau equations. Ann Inst H Poincaré Probab Statist, 2006, 42: 417-454 [27] Prato G D, Zabczyk J.Ergodicity for Infinite-Dimensional Systems. Cambridge: Cambridge University Press, 1996 [28] Saito H, Ueda M. Intermittent implosion and pattern formation of trapped Bose-Einstein Condensates with an attractive interaction. Physical Review Letters, 2001, 86: Art 1406 [29] Weinstein M I. Nonlinear Schrödinger equations and sharp interpolation estimates. Comm Math Phys, 1983, 87: 567-576 [30] Yan T, Zhang L, Zou A, Shu J.Dynamics of the stochastic $g$-Navier-Stokes equations driven by nonlinear noise. Acta Math Sci, 2023, 43B: 2108-2120 |