[1] Atiyah M F, Bott R. The Yang-Mills equations over Riemann surfaces. Philos Trans Roy Soc London Ser A, 1983, 308(1505): 523-615 [2] Bourguignon J P, Lawson H B. Stability and isolation phenomena for Yang-Mills fields. Comm Math Phys1981, 79(2): 189-230 [3] Charalambous N, Gross L. The Yang-Mills heat semigroup on three-manifolds with boundary. Comm Math Phys, 2013, 317(3): 727-785 [4] Charalambous N, Gross L. Neumann domination for the Yang-Mills heat equation. J Math Phys, 2015, 56(7): Art 073505 [5] Donaldson S K. An application of gauge theory to four-dimensional topology. J Differential Geom, 1983, 18(2): 279-315 [6] Feehan P M. Energy gap for Yang-Mills connections, I: Four-dimensional closed Riemannian manifolds. Adv Math, 2016, 296: 55-84 [7] Feehan P M. Energy gap for Yang-Mills connections, II: Arbitrary closed Riemannian manifolds. Adv Math, 2017, 312: 547-587 [8] Freed D S, Uhlenbeck K K.Instantons and Four-Manifolds. New York: Springer-Verlag, 1991 [9] Gritsch U. Morse theory for the Yang-Mills functional via equivariant homotopy theory. Trans Amer Math Soc, 2000, 352(8): 3473-3493 [10] Gross L. The Yang-Mills heat equation with finite action in three dimensions. Mem Amer Math Soc, 2022, 275(1349): v+111 [11] Hong M C, Tian G. Asymptotical behaviour of the Yang-Mills flow and singular Yang-Mills connections. Math Ann, 2004, 330(3): 441-472 [12] Hong M C, Tian G, Yin H. The Yang-Mills $\alpha$-flow in vector bundles over four manifolds and its applications. Comment Math Helv, 2015, 90(1): 75-120 [13] Hong M C, Yin H. On the Sacks-Uhlenbeck flow of Riemannian surfaces. Comm Anal Geom, 2013, 21(5): 917-955 [14] Kelleher C, Streets J. Singularity formation of the Yang-Mills flow. Ann Inst H Poincaré C Anal Non Linéaire, 2018, 35(6): 1655-1686 [15] Lieberman G M.Second Order Parabolic Differential Equations. London: World Scientific Publishing Co Pte Ltd, 1996 [16] Marini A. Dirichlet and Neumann boundary value problems for Yang-Mills connections. Comm Pure Appl Math, 1992, 45(8): 1015-1050 [17] Parker T H. Nonminimal Yang-Mills fields and dynamics. Invent Math, 1992, 107(2): 397-420 [18] Pulemotov A. The Li-Yau-Hamilton estimate and the Yang-Mills heat equation on manifolds with boundary. J Funct Anal, 2008, 255(10): 2933-2965 [19] Pulemotov A. Quasilinear parabolic equations and the Ricci flow on manifolds with boundary. J Reine Angew Math, 2013, 683: 97-118 [20] Sacks J, Uhlenbeck K. The existence of minimal immersions of $2$-spheres. Ann of Math, 1981, 113(1): 1-24 [21] Sadun L, Segert J. Non-self-dual Yang-Mills connections with quadrupole symmetry. Comm Math Phys, 1992, 145(2): 363-391 [22] Schlatter A. Global existence of the Yang-Mills flow in four dimensions. J Reine Angew Math, 1996, 479: 133-148 [23] Schlatter A. Long-time behaviour of the Yang-Mills flow in four dimensions. Ann Global Anal Geom, 1997, 15(1): 1-25 [24] Schoen R, Uhlenbeck K. A regularity theory for harmonic maps. J Differential Geometry, 1982, 17(2): 307-335 [25] Schoen R.Analytic aspects of the harmonic map problem//Chern S S. Seminar on Nonlinear Partial Differential Equations. New York: Springer, 1984 [26] Sedlacek S. A direct method for minimizing the Yang-Mills functional over $4$-manifolds. Comm Math Phys, 1982, 86(4): 515-527 [27] Sharp B, Zhu M M. Regularity at the free boundary for Dirac-harmonic maps from surfaces. Calc Var Partial Differential Equations, 2016, 55(2): Art 27 [28] Sibner L M, Sibner R J, Uhlenbeck K. Solutions to Yang-Mills equations that are not self-dual. Proc Nat Acad Sci, 1989, 86(22): 8610-8613 [29] Sire Y, Wei J C, Zheng Y Q.Infinite time bubbling for the $\mathrm{SU}(2)$ Yang-Mills heat flow on $\mathbb{R}^4$. arXiv: 2208.13875 [30] Solonnikov V A. Boundary value problems for linear parabolic systems of differential equations in general form. Proc Steklov Inst Math, 1965, 83: 3-163 [31] Struwe M. On the evolution of harmonic mappings of Riemannian surfaces. Comment Math Helv, 1985, 60(1): 558-581 [32] Struwe M. The Yang-Mills flow in four dimensions. Calc Var Partial Differential Equations, 1994, 2(2): 123-150 [33] Uhlenbeck K K. Connections with $L^{p}$ bounds on curvature. Comm Math Phys, 1982, 83(1): 31-42 [34] Uhlenbeck K K. Removable singularities in Yang-Mills fields. Comm Math Phys, 1982, 83(1): 11-29 [35] Waldron A. Long-time existence for Yang-Mills flow. Invent Math, 2019, 217(3): 1069-1147 [36] Wang H Y. The existence of nonminimal solutions to the Yang-Mills equation with group ${\rm SU}(2)$ on $S^2\times S^2$ and $S^1\times S^3$. J Differential Geom, 1991, 34(3): 701-767 [37] Wehrheim K. Uhlenbeck Compactness. Cambridge: European Mathematical Society, 2004 [38] Energy quantization and mean value inequalities for nonlinear boundary value problems. J Eur Math Soc, 2005, 7(3): 305-318 [39] Yin H. Direct minimizing method for Yang-Mills energy over $SO(3)$ bundle. Math Ann, 2024, 390(1): 557-587 |