[1] Benedicks M. On Fourier transforms of function supported on sets of finite Lebesgue measure. J Math Anal Appl, 1985, 106: 180-183 [2] Beurling A.The Collected Works of Arne Beurling. Vol 1-2. Boston: Birkhäuser, 1989 [3] Dhaouadi L, Sahbani J, Fitouhi A. Harmonic analysis associated to the canonical Fourier Bessel transform. Integral Transforms and Special Functions, 2021, 32(4): 290-315 [4] Donoho D, Stark P. Uncertainty principles and signal recovery. SIAM J Appl Math, 1989, 49: 906-931 [5] Folland G B, Sitaram A. The uncertainty principle: A mathematical survey. J Fourier Anal Appl, 1997, 3(3): 207-238 [6] Ghazouani S, Sahbani J. Canonical Fourier-Bessel transform and their applications. J Pseudo-Differ Oper Appl, 2023, 14: Art 3 [7] Ghazouani S, Soltani E, Fitouhi A. A unified class of integral transforms related to the Dunkl transform. J Math Anal Appl, 2017, 449(2): 1797-1849 [8] Healy J J, Kutay M A, Ozaktas H M, Sheridan J T.Linear Canonical Transforms: Theory and Applications. New York: Springer, 2016 [9] Hörmander L. A uniqueness theorem of Beurling for Fourier transform pairs. Arkiv fur Matematik, 1991, 29: 237-240 [10] Kerr F. A fractional power theory for Hankel transforms in $L^{2}(\mathbb{R}_{+})$. J Math Anal Appl, 1991, 158(1): 114-123 [11] Landau H J, Pollak H O. Prolate spheroidal wave functions, Fourier analysis and uncertainty II. Bell Syst Tech J, 1961, 40: 65-84 [12] Moshinsky M, Quesne C. Linear canonical transformations and their unitary representations. J Mathematical Phys, 1971, 12: 1772-1780 [13] Quesne C, Moshinsky M. Canonical transformations and matrix elements. J Math Phys, 1971, 12: 1780-1783 [14] Sahbani J, Guettiti T. Prolate spheroidal wave functions associated with the canonical Fourier-Bessel transform and uncertainty principles. Math Meth Appl Sci, 2023, 46(14): 15506-15525 [15] Sahbani J. Quantitative uncertainty principles for the canonical Fourier-Bessel transform. Acta Mathematica Sinica, 2022, 38(2): 331-346 [16] Stuart A, Collins J. Lens-system diffraction integral written in terms of matrix optics. Journal of the Optical Society of America, 1970, 60(9): 1168-1177 [17] Tuan V K. Uncertainty principles for the Hankel transform. Integral Transforms and Special Functions, 2007, 18(5): 369-381 [18] Watson G.A Treatise on the Theory of Bessel Functions. Cambridge: Cambridge University Press, 1944 |