|   [1]  Alexandrov S,  Vassilevich D. Heat kernel for nonminimal operators on a Kahler manifold. J Math Phys, 1996, 37(11): 5715--5718  
 
[2]  Berline N, Getzler E, Vergne M. Heat kernels and Dirac operators. Corrected reprint of the 1992 original. Grundlehren Text Editions. Berlin: Springer-Verlag,  2004  
 
[3]  Donnelly H. Heat equation asymptotics with torsion. Indiana Univ Math J, 1985, 34(1): 105--113  
 
[4] Donnelly H. Spectrum and the fixed point sets of isometries I. Math Ann, 1976, 224(2):  161--170  
 
[5] Dryden E, Gordon C, Greenwald S, Webb D. Asymptotic expansion of the heat kernel for orbifolds. Michigan Math J, 2008, 56(1):   205--238  
 
[6]  Lafferty J D, Yu Y L, Zhang W P. A direct geometric proof of Lefschetz fixed point formulas. Trans Amer Math Soc, 1992, 329: 571--583  
 
[7]  Gilkey P. Heat content asymptotics of nonminimal operators. Topol Methods Nonlinear Anal, 1994, 3(1):  69--80  
 
[8]  Gilkey P. Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem. Second ed. Boca Raton, FL: CRC Press,  1995  
 
[9]  Gilkey P, Branson T, Fulling S. Heat equation asymptotics of ``nonminimal'' operators  on differential forms. J Math Phys, 1991, 32(8):  2089--2091  
 
[10]  Puta M, Cret F. A generalization of the Gilkey-Branson-Fulling formula//Proceedings of  the Workshop on Global Analysis, Differential Geometry, Lie Algebras (Thessaloniki, 1997).  BSG Proc, 5. Bucharest: Geom Balkan Press, 2001: 79--82 
 
[11]  Yu Y. Trigonometry II.  Acta Math Sinica, New Series, 1990, 6(1):  80--86  
 
[12]  Zhu Fuliu. On the heat kernel of the Riemannian symmetric space SU(6)/SP(3). Acta Math Sci, 1995, 15(3): 310--325  |